Spelling suggestions: "subject:"perceptrons dde múltiplas camada"" "subject:"perceptrons dee múltiplas camada""
1 |
Redes neurais artificiais como ferramenta para prognose de crescimento e melhoramento genético florestal /Silva, William de Medeiros January 2019 (has links)
Orientador: Rinaldo Cesar de Paula / Resumo: RESUMO – O eucalipto é a cultura de maior destaque para o setor florestal brasileiro. No entanto, a expansão do setor para áreas com condições climáticas limitantes ao desenvolvimento da cultura e a instabilidade climática atual, são alguns dos fatores que têm comprometido o desenvolvimento desta cultura no país nos últimos anos. Assim, é importante a busca contínua por ferramentas que possibilitem a prognose de crescimento, a seleção de indivíduos e famílias e a análise do comportamento de genótipos de eucalipto frente às variações ambientais de forma cada vez mais acurada. Desta forma, o objetivo geral deste trabalho foi testar o desempenho das Redes Neurais Artificiais (RNA) na modelagem de crescimento de clones de eucalipto, na predição de valores genéticos de indivíduos e famílias, e na seleção quanto à produtividade, estabilidade e adaptabilidade de progênies de Eucalyptus sp. Para a prognose de crescimento foram utilizados dados de 18 clones comerciais de Eucalyptus em diferentes estados do Brasil, e para a estimação de valor genético e análise de produtividade, estabilidade e adaptabilidade foram utilizados dados de testes de progênies de Eucalyptus grandis. Neste trabalho foram testadas diferentes arquiteturas de RNA do tipo múltiplas camadas com o algoritmo de aprendizado de retropropagação do erro e função de ativação do tipo tangente hiperbólica. O modelo desenvolvido para prognose do diâmetro à altura do peito (DAP) de árvores individuais em um local foi capaz de... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: ABSTRACT – Eucalyptus is the most important crop of the most important for the Brazilian forest sector. However, the expansion of the sector to areas with climatic conditions limiting the development of the crop and current climate instability are some of the factors that have compromised the development of this culture in the country in recent years. Thus, it is important to continuously search for tools that allow the prognosis of growth, the selection of individuals and families and the analysis of the behavior of eucalyptus genotypes in the face of environmental changes in an increasingly accurate way. Thus, the general objective of this work was to test the performance of artificial neural networks (ANN) in the modeling of growth of eucalyptus clones, prediction of genetic values of individuals and families, and selection of productivity, stability and adaptability of progenies of Eucalyptus sp. For the prognosis of growth, data from 18 commercial Eucalyptus clones were used in different states of Brazil, and for genetic value estimation and productivity, stability and adaptability analysis data from Eucalyptus grandis progenies were used. In this work, different ANN architectures of the multilayer type were tested with the backpropagation error algorithm and hyperbolic tangent activation function. The model developed for prognosis of the diameter at breast height (DBH) individual trees in one place was able to maintain good accuracy when applied at other sites. The thre... (Complete abstract click electronic access below) / Doutor
|
Page generated in 0.0823 seconds