Spelling suggestions: "subject:"perchlorate contamination"" "subject:"perchlorates contamination""
1 |
Modeling autohydrogenotrophic treatment of perchlorate-contaminated water in the presence of nitrateLondon, Mara Rachel 20 October 2009 (has links)
Perchlorate contamination is widespread. Perchlorate, a water contaminant, disrupts iodide uptake to the thyroid, inhibiting growth and mental development. Recent studies have demonstrated autohydrogenotrophic perchlorate reduction to chloride. Hydrogen gas can be produced in-situ via the corrosion of zero-valent iron (ZVI), thereby avoiding problems related to the low aqueous solubility of hydrogen gas. The presence of nitrate has been shown inhibit autohydrogenotrophic perchlorate reduction. However, no studies have modeled the effects of nitrate on autohydrogenotrophic perchlorate biokinetics or developed a model to function as a design tool to predict long-term performance of ZVI/biotic perchlorate treatment systems in the presence of nitrate.
Batch experiments demonstrated the presence of nitrate significantly inhibited perchlorate degradation by an autohydrogenotrophic microbial consortium. However, the consortium was capable of significant perchlorate reduction while the bulk of the nitrate was still present. A modified competitive inhibition model successfully predicted autohydrogenotrophic perchlorate degradation in the presence of nitrate. The model describes perchlorate degradation as a function of the biomass, perchlorate, hydrogen, and nitrate concentrations, as well as the single-component perchlorate, hydrogen, and nitrate half-saturation coefficients and perchlorate maximum substrate utilization rate. To obtain the single-component parameters, a series of batch experiments were performed under perchlorate-, nitrate-, and hydrogen-limiting conditions. The single-component biokinetic parameters and model predictions indicate the consortium could treat perchlorate-contaminated water with concentrations in the low hundreds of μg/L and in states with perchlorate treatment goals in the low μg/L range.
The consortium biokinetic parameters and modified competitive inhibition model were used in the development of an AQUASIM based biofilm model. The model also integrated physical parameters, ZVI hydrogen production, and abiotic nitrate reduction. The model was calibrated using the long-term performance results of a laboratory-scale ZVI/biotic column. Both laboratory and modeling results showed when the column becomes hydrogen-limited, the presence of nitrate decreases perchlorate removal efficiency. Full-scale simulations demonstrated the model could prove useful as a predictive design tool. Simulations suggest that a permeable reactive barrier that includes 10% ZVI and additional media capable of pH buffering could remove typical contaminated ground water concentrations of perchlorate in the presence of typical oxygen and nitrate concentrations. / text
|
2 |
Molecular biology tools for identification and quantification of perchlorate-reduction genes in biotreatment applicatinsDe Long, Susan Kathleen 10 April 2014 (has links)
Perchlorate contamination of drinking water sources in the United States is widespread and represents a public health concern. Biological treatment is an attractive option because perchlorate-reducing bacteria (PRB) are ubiquitous in the environment and can reduce perchlorate completely to chloride. Treatment of perchlorate-contaminated water in fixed-bed bioreactors has been demonstrated at the laboratory- and pilot-scale. However, full-scale development of reliable biological drinking water treatment processes requires a better understanding of the microbial ecology and activity of perchlorate-reducing communities in bioreactors. The objective of this research was to develop molecular biology tools (MBTs) to quantify PRB and expression of genes required for complete perchlorate reduction (pcrA and cld). The development of MBTs targeting specific genes requires that the sequence of the genes be known. In this work, an MBT called prokaryotic Suppression Subtractive Hybridization (SSH) PCR complementary DNA (cDNA) Subtraction was developed to rapidly isolate target genes for sequencing. This new tool was developed and validated using the model bacterium Pseudomonas putida mt-2 and the model pollutant toluene. For this system, over 90% of the isolated gene fragments encoded toluene-related enzymes, and 20 distinct toluene-related genes from three key operons were identified. Based on these results, prokaryotic SSH PCR cDNA Subtraction shows promise as a targeted method for gene identification; however, application to a PRB did not yield new pcrA and cld sequences. Therefore, to support the development of biological perchlorate treatment processes, quantitative PCR (qPCR) and reverse transcription qPCR (RT-qPCR) assays targeting pcrA and cld were developed using existing sequences. The qPCR and RT-qPCR assays were applied to a laboratory-scale bioreactor and two pilot-scale bioreactors treating perchlorate-contaminated water. Higher quantities of perchlorate reduction genes and transcripts generally were observed when bioreactor performance was superior. Although no quantitative correlations were established, these assays detected differences in the quantity of PRB and changes in gene expression levels during the course of bioreactor operation and between bioreactors with different performance levels. Furthermore, these assays provided an additional line of evidence that microbial perchlorate reduction was occurring. This marks the first application of qPCR assays to quantify perchlorate reduction genes and transcripts in bioreactors. / text
|
Page generated in 0.1089 seconds