• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Perfect Hash Families: Constructions and Applications

Kim, Kyung-Mi January 2003 (has links)
Let <b>A</b> and <b>B</b> be finite sets with |<b>A</b>|=<i>n</i> and |<b>B</b>|=<i>m</i>. An (<i>n</i>,<i>m</i>,<i>w</i>)-<i>perfect hash</i> family</i> is a collection <i>F</i> of functions from <b>A</b> to <b>B</b> such that for any <b>X</b> &#8838; <b>A</b> with |<b>X</b>|=<i>w</i>, there exists at least one ? &#8712; <i>F</i> such that ? is one-to-one when restricted to <b>X</b>. Perfect hash families are basic combinatorial structures and they have played important roles in Computer Science in areas such as database management, operating systems, and compiler constructions. Such hash families are used for memory efficient storage and fast retrieval of items such as reserved words in programming languages, command names in interactive systems, or commonly used words in natural languages. More recently, perfect hash families have found numerous applications to cryptography, for example, to broadcast encryption schemes, secret sharing, key distribution patterns, visual cryptography, cover-free families and secure frameproof codes. In this thesis, we survey constructions and applications of perfect hash families. For constructions, we divided the results into three parts, depending on underlying structure and properties of the constructions: combinatorial structures, linear functionals, and algebraic structures. For applications, we focus on those related to cryptography.
2

Perfect Hash Families: Constructions and Applications

Kim, Kyung-Mi January 2003 (has links)
Let <b>A</b> and <b>B</b> be finite sets with |<b>A</b>|=<i>n</i> and |<b>B</b>|=<i>m</i>. An (<i>n</i>,<i>m</i>,<i>w</i>)-<i>perfect hash</i> family</i> is a collection <i>F</i> of functions from <b>A</b> to <b>B</b> such that for any <b>X</b> &#8838; <b>A</b> with |<b>X</b>|=<i>w</i>, there exists at least one ? &#8712; <i>F</i> such that ? is one-to-one when restricted to <b>X</b>. Perfect hash families are basic combinatorial structures and they have played important roles in Computer Science in areas such as database management, operating systems, and compiler constructions. Such hash families are used for memory efficient storage and fast retrieval of items such as reserved words in programming languages, command names in interactive systems, or commonly used words in natural languages. More recently, perfect hash families have found numerous applications to cryptography, for example, to broadcast encryption schemes, secret sharing, key distribution patterns, visual cryptography, cover-free families and secure frameproof codes. In this thesis, we survey constructions and applications of perfect hash families. For constructions, we divided the results into three parts, depending on underlying structure and properties of the constructions: combinatorial structures, linear functionals, and algebraic structures. For applications, we focus on those related to cryptography.
3

Covering Arrays: Algorithms and Asymptotics

January 2016 (has links)
abstract: Modern software and hardware systems are composed of a large number of components. Often different components of a system interact with each other in unforeseen and undesired ways to cause failures. Covering arrays are a useful mathematical tool for testing all possible t-way interactions among the components of a system. The two major issues concerning covering arrays are explicit construction of a covering array, and exact or approximate determination of the covering array number---the minimum size of a covering array. Although these problems have been investigated extensively for the last couple of decades, in this thesis we present significant improvements on both of these questions using tools from the probabilistic method and randomized algorithms. First, a series of improvements is developed on the previously known upper bounds on covering array numbers. An estimate for the discrete Stein-Lovász-Johnson bound is derived and the Stein- Lovász -Johnson bound is improved upon using an alteration strategy. Then group actions on the set of symbols are explored to establish two asymptotic upper bounds on covering array numbers that are tighter than any of the presently known bounds. Second, an algorithmic paradigm, called the two-stage framework, is introduced for covering array construction. A number of concrete algorithms from this framework are analyzed, and it is shown that they outperform current methods in the range of parameter values that are of practical relevance. In some cases, a reduction in the number of tests by more than 50% is achieved. Third, the Lovász local lemma is applied on covering perfect hash families to obtain an upper bound on covering array numbers that is tightest of all known bounds. This bound leads to a Moser-Tardos type algorithm that employs linear algebraic computation over finite fields to construct covering arrays. In some cases, this algorithm outperforms currently used methods by more than an 80% margin. Finally, partial covering arrays are introduced to investigate a few practically relevant relaxations of the covering requirement. Using probabilistic methods, bounds are obtained on partial covering arrays that are significantly smaller than for covering arrays. Also, randomized algorithms are provided that construct such arrays in expected polynomial time. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2016
4

Hash Families and Cover-Free Families with Cryptographic Applications

Zaverucha, Gregory 22 September 2010 (has links)
This thesis is focused on hash families and cover-free families and their application to problems in cryptography. We present new necessary conditions for generalized separating hash families, and provide new explicit constructions. We then consider three cryptographic applications of hash families and cover-free families. We provide a stronger de nition of anonymity in the context of shared symmetric key primitives and give a new scheme with improved anonymity properties. Second, we observe that nding the invalid signatures in a set of digital signatures that fails batch veri cation is a group testing problem, then apply and compare many group testing algorithms to solve this problem e ciently. In particular, we apply group testing algorithms based on cover-free families. Finally, we construct a one-time signature scheme based on cover-free families with short signatures.
5

Hash Families and Cover-Free Families with Cryptographic Applications

Zaverucha, Gregory 22 September 2010 (has links)
This thesis is focused on hash families and cover-free families and their application to problems in cryptography. We present new necessary conditions for generalized separating hash families, and provide new explicit constructions. We then consider three cryptographic applications of hash families and cover-free families. We provide a stronger de nition of anonymity in the context of shared symmetric key primitives and give a new scheme with improved anonymity properties. Second, we observe that nding the invalid signatures in a set of digital signatures that fails batch veri cation is a group testing problem, then apply and compare many group testing algorithms to solve this problem e ciently. In particular, we apply group testing algorithms based on cover-free families. Finally, we construct a one-time signature scheme based on cover-free families with short signatures.

Page generated in 0.5136 seconds