Spelling suggestions: "subject:"bperformance 3dmodeling anda 2analysis"" "subject:"bperformance 3dmodeling anda 3analysis""
1 |
Development and Application of an Analyst Process Model for a Search Task ScenarioKarl, Hendrickson K. 04 June 2014 (has links)
No description available.
|
2 |
Theories and Techniques for Efficient High-End ComputingGe, Rong 02 November 2007 (has links)
Today, power consumption costs supercomputer centers millions of dollars annually and the heat produced can reduce system reliability and availability. Achieving high performance while reducing power consumption is challenging since power and performance are inextricably interwoven; reducing power often results in degradation in performance.
This thesis aims to address these challenges by providing theories, techniques, and tools to 1) accurately predict performance and improve it in systems with advanced hierarchical memories, 2) understand and evaluate power and its impacts on performance, 3) control power and performance for maximum efficiency.
Our theories, techniques, and tools have been applied to high-end computing systems. Our theroetical models can improve algorithm performance by up to 59% and accurately predict the impacts of power on performance. Our techniques can evaluate power consumption of high-end computing systems and their applications with fine granularity and save up to 36% energy with little performance degradation. / Ph. D.
|
3 |
Scalable and Energy Efficient Execution Methods for Multicore SystemsLi, Dong 16 February 2011 (has links)
Multicore architectures impose great pressure on resource management. The exploration spaces available for resource management increase explosively, especially for large-scale high end computing systems. The availability of abundant parallelism causes scalability concerns at all levels. Multicore architectures also impose pressure on power management. Growth in the number of cores causes continuous growth in power.
In this dissertation, we introduce methods and techniques to enable scalable and energy efficient execution of parallel applications on multicore architectures. We study strategies and methodologies that combine DCT and DVFS for the hybrid MPI/OpenMP programming model. Our algorithms yield substantial energy saving (8.74% on average and up to 13.8%) with either negligible performance loss or performance gain (up to 7.5%).
To save additional energy for high-end computing systems, we propose a power-aware MPI task aggregation framework. The framework predicts the performance effect of task aggregation in both computation and communication phases and its impact in terms of execution time and energy of MPI programs. Our framework provides accurate predictions that lead to substantial energy saving through aggregation (64.87% on average and up to 70.03%) with tolerable performance loss (under 5%).
As we aggregate multiple MPI tasks within the same node, we have the scalability concern of memory registration for high performance networking. We propose a new memory registration/deregistration strategy to reduce registered memory on multicore architectures with helper threads. We investigate design polices and performance implications of the helper thread approach. Our method efficiently reduces registered memory (23.62% on average and up to 49.39%) and avoids memory registration/deregistration costs for reused communication memory. Our system enables the execution of application input sets that could not run to the completion with the memory registration limitation. / Ph. D.
|
4 |
Energy-aware Thread and Data Management in Heterogeneous Multi-Core, Multi-Memory SystemsSu, Chun-Yi 03 February 2015 (has links)
By 2004, microprocessor design focused on multicore scaling"increasing the number of cores per die in each generation "as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency.
With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitive or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood.
In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access (NUMA) systems. I use critical path analysis to quantify memory contention in the NUMA memory system and determine thread mappings. In addition, I implement a runtime system that combines concurrent throttling and a novel thread mapping algorithm to manage thread resources and improve energy efficient execution in multi-core, NUMA systems.
In addition, I propose an analytical model based on the queuing method that captures important factors in multi-core, multi-memory systems to quantify the tradeoff between performance and energy. The model considers the effect of these factors in a holistic fashion that provides a general view of performance and energy consumption in contemporary systems.
Finally, I focus on resource management of future heterogeneous memory systems, which may combine two heterogeneous memories to scale out memory capacity while maintaining reasonable power use. I present a new memory controller design that combines the best aspects of two baseline heterogeneous page management policies to migrate data between two heterogeneous memories so as to optimize performance and energy. / Ph. D.
|
Page generated in 0.1401 seconds