• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Based Seismic Design of Lateral Force Resisting System

Michel, Kenan 06 October 2020 (has links)
Das seitliche Kraftwiderstandssystem, in diesem Fall Stahlbetonkernwände eines 10-stöckigen Gebäudes, das aus Schwerkraftstützen und Scherwänden besteht, wurde linear (unter der Annahme eines linearen elastischen Materialverhaltens von Beton) und nichtlinear gerissen (unter Berücksichtigung des Materialverhaltens von Beton) unter seismische Belastung analysiert. Erst wurde die grundlegenden Methode der äquivalenten Seitenkraft zur Schätzung der seismischen Belastungen benutzt, später wurde die aktuelle Methode The Performance Based Seismic Design verwendet, bei der reale seismische Aufzeichnungen verwendet werden und die Beschleunigungen mithilfe der Software ETABS auf das Gebäude angewendet werden. Nach dem Anwenden der Beschleunigungen wurden die maximal resultierenden Kräfte und Verformungen bewertet. Das Gebäude wurde dann für die maximal resultierenden Kräfte ausgelegt.Der Inhalt des Hauptberichts ist: - Allgemeine Beschreibung des Gebäudes, seismische Standortinformationen, Standortantwortspektren, Belastung und seismische Kräfte einschließlich Analyse des modalen Antwortspektrums. - Lineares Design des Modells für Schwerkraft und seismische Belastungen, P-M-Wechselwirkungsdiagramme für den U-Querschnitt aus Stahlbeton, Entwurf einer Längs- und Schubbewehrung der Scherwände und des Koppelbalkens. - Zwei Varianten des nichtlinearen Modells, bei denen die Kernwand (Scherwände) gemäß jeder Variante entworfen wird, wobei der Einfluss des Dämpfungsmodells auf das nichtlineare dynamische Verhalten sowie der Einfluss des Kopplungsstrahlmodells auf das nichtlineare dynamische Verhalten untersucht werden. - Entwurfsüberprüfung, erst mit der Definition der Leistungsobjekte und Modell für die Zeitverlaufsanalyse. Es wurden zwei Leistungsziele untersucht: Vollbetriebs- und Lebenssicherheitsprüfungen. - In zwei Fällen wurde eine zusätzliche Studie zur Reaktion von nicht strukturellen Elementen aufgrund seismischer Belastung durchgeführt: Überprüfung des Vollbetriebs und der Lebenssicherheit. - Die Durchsetzungszeichnungen wurden fertiggestellt und dem Bericht beigefügt. Schlussfolgerung und Empfehlungen waren am Ende des Berichts. Dies ist wichtig für die Gesellschaft, da die verwendete Methode für die seismische Planung jedes Gebäudes verwendet werden kann. Es könnte ein Holzbau oder ein Mauerwerk sein. Die Gestaltung eines Mauerwerksgehäuses wird Gegenstand eines zukünftigen Forschungsprojekts sein. Allgemeine Ziele: Lineare und nichtlineare seismische Bemessung von Stahlbetongebäuden unter Verwendung der 'seismischen Bemessung der Leistungsgrundlagen:Acknowledgement 4 PART I: General Information, Site and Loading 5 1. General Information About the Building 5 1.1. Specified Material Properties: 6 1.2. Site Information: 6 1.3. Geometry (Figure I.1): 7 2. Site Seismicity and Design Coefficients 7 2.1. USGS Results 7 2.2. Site Response Spectra 8 2.3. Design Coefficients And Factors For Seismic Force-Resisting Systems 8 3. Loading 9 3.1. Determination Of Seismic Forces 9 3.2. Modal Response Spectrum Analysis 9 3.3. Seismic Load Effects And Combinations 11 PART II: Core Wall Design - Linear Model 12 4. Model of ETABS 12 4.1. Geometry 12 4.2. Gravity Loads 13 4.3. Seismic Loads 15 4.4. Tabulated Selected Results From ETABS Analysis 16 5. P-M Interaction Diagrams 17 5.1. N-S Direction 17 5.2. E-W Direction 19 6. Lateral Force Resisting System, Linear 20 6.1. Longitudinal Reinforcement 20 6.2. Shear Reinforcement 22 6.3. Boundary Elements 24 6.3.1. Transverse Reinforcement Of Boundary Elements 26 6.4. Coupling Beams 27 7. Detailing 30 PART III: Site Response Spectra and Input Ground Motions 31 8. Performance Levels 31 8.1. ASCE 7-16 Target Spectra 31 8.2. Site Response Spectra 34 8.2.1. Ground Motion Conditioning 34 8.2.2. Amplitude Scaling 37 8.2.3. Pseudo Acceleration and Displacement Response Spectra 38 PART IV: Non-Linear Model 40 9. Variant 1 of Non-Linear Model 40 9.1. Complete Core Wall Design for Combined Axial-Flexure 40 9.2. Modal Analysis 43 9.3. Influence of the Damping Model on the Nonlinear Dynamic Response 49 10. Variant 2 of Non-Linear Model 57 10.1. Influence of the Coupling Beam Model on the Nonlinear Dynamic Response 57 10.2. Estimated Roof Displacement 68 PART V: Design Verification 70 11. General 70 11.1. Performance Objectives 70 11.2. Model For Time-History Analyses 71 11.3. Performance Level Verification 71 11.4. Fully Operational Performance Level Verification 71 11.5. Life Safety Performance Level Verification 78 PART VI: Capacity Design of Force Controlled Elements and Regions and Design of Acceleration-Sensitive Nonstructural Elements 87 12. General 87 12.1. Design Verification 87 12.1.1. Full Occupancy Case 87 12.1.2. Life Safety Case 91 12.1.3. Observations on Plots 93 12.2. Acceleration response spectra at roof level 94 12.2.1. Observations on Plots 95 12.3. Core Wall 97 12.4. Design Detail Comparison 103 12.5. Detailed Drawing 103 12.6. Diaphragm 104 12.7. Fire Sprinkler System 117 12.8. Overhanging Projector 119 PART VII: Conclusion 122 / Lateral Force Resisting System, in this case reinforced concrete core walls of a 10 story building consists of gravity columns and shear walls, has been analyzed in linear (assuming linear elastic material behavior of concrete) and nonlinear cracked (considering plastic material behavior of concrete) case, for seismic loading. Starting with the basic method of equivalent lateral force to estimate the seismic loads, then using the up to date method, The Performance Based Seismic Design, which uses real seismic records and apply the accelerations on the building using the software ETABS. After applying the accelerations, maximum resulted forces and deformations have been evaluated. The building then have been designed for the maximum resulted forces. The contents of the main report are: - General description of the building, site seismic information, site response spectra, loading and seismic forces including modal response spectrum analysis. - Linear design of the model for gravity and seismic loads, P-M interaction diagrams developed for U cross section from reinforced concrete, designing longitudinal and shear reinforcement of the shear walls and coupling beam. - Two variants of Nonlinear model, designing the core wall (shear walls) according to each variant, studying the influence of damping model on the nonlinear dynamic response, as well as the influence of the coupling beam model on the nonlinear dynamic response. - Design verification, starting with defining the performance objects, and model for time history analysis. Two performance objectives have been studied: Fully operational and Life safety level verifications. - Additional study was performed for the response of non-structural elements due to seismic loading in two cases: Fully operational and Life safety level verifications. - Reinforcement Drawings have been finalized and attached to the report. - Conclusion and recommendations was at the end of the report. It is important for the society, because the used method could be used for the seismic design of any building. It could be wood building or masonry building. Designing a masonry building case will be the subject of future research project. Overall objectives: Linear and Nonlinear seismic design of reinforced concrete building using the performance bases seismic design.:Acknowledgement 4 PART I: General Information, Site and Loading 5 1. General Information About the Building 5 1.1. Specified Material Properties: 6 1.2. Site Information: 6 1.3. Geometry (Figure I.1): 7 2. Site Seismicity and Design Coefficients 7 2.1. USGS Results 7 2.2. Site Response Spectra 8 2.3. Design Coefficients And Factors For Seismic Force-Resisting Systems 8 3. Loading 9 3.1. Determination Of Seismic Forces 9 3.2. Modal Response Spectrum Analysis 9 3.3. Seismic Load Effects And Combinations 11 PART II: Core Wall Design - Linear Model 12 4. Model of ETABS 12 4.1. Geometry 12 4.2. Gravity Loads 13 4.3. Seismic Loads 15 4.4. Tabulated Selected Results From ETABS Analysis 16 5. P-M Interaction Diagrams 17 5.1. N-S Direction 17 5.2. E-W Direction 19 6. Lateral Force Resisting System, Linear 20 6.1. Longitudinal Reinforcement 20 6.2. Shear Reinforcement 22 6.3. Boundary Elements 24 6.3.1. Transverse Reinforcement Of Boundary Elements 26 6.4. Coupling Beams 27 7. Detailing 30 PART III: Site Response Spectra and Input Ground Motions 31 8. Performance Levels 31 8.1. ASCE 7-16 Target Spectra 31 8.2. Site Response Spectra 34 8.2.1. Ground Motion Conditioning 34 8.2.2. Amplitude Scaling 37 8.2.3. Pseudo Acceleration and Displacement Response Spectra 38 PART IV: Non-Linear Model 40 9. Variant 1 of Non-Linear Model 40 9.1. Complete Core Wall Design for Combined Axial-Flexure 40 9.2. Modal Analysis 43 9.3. Influence of the Damping Model on the Nonlinear Dynamic Response 49 10. Variant 2 of Non-Linear Model 57 10.1. Influence of the Coupling Beam Model on the Nonlinear Dynamic Response 57 10.2. Estimated Roof Displacement 68 PART V: Design Verification 70 11. General 70 11.1. Performance Objectives 70 11.2. Model For Time-History Analyses 71 11.3. Performance Level Verification 71 11.4. Fully Operational Performance Level Verification 71 11.5. Life Safety Performance Level Verification 78 PART VI: Capacity Design of Force Controlled Elements and Regions and Design of Acceleration-Sensitive Nonstructural Elements 87 12. General 87 12.1. Design Verification 87 12.1.1. Full Occupancy Case 87 12.1.2. Life Safety Case 91 12.1.3. Observations on Plots 93 12.2. Acceleration response spectra at roof level 94 12.2.1. Observations on Plots 95 12.3. Core Wall 97 12.4. Design Detail Comparison 103 12.5. Detailed Drawing 103 12.6. Diaphragm 104 12.7. Fire Sprinkler System 117 12.8. Overhanging Projector 119 PART VII: Conclusion 122
2

An examination of analysis and optimization procedures within a PBSD framework

Cott, Andrew January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / The basic tenets of performance based seismic design (PBSD) are introduced. This includes a description of the underlying philosophy of PBSD, the concept of performance objectives, and a description of hazard levels and performance indicators. After establishing the basis of PBSD, analysis procedures that fit well within the PBSD framework are introduced. These procedures are divided into four basic categories: linear static, linear dynamic, nonlinear static, and nonlinear static. Baseline FEMA requirements are introduced for each category. Each analysis category is then expanded to include a detailed description of and variations on the basic procedure. Finally, optimization procedures that mesh well with a PBSD framework are introduced and described. The optimization discussion focuses first on the solution tools needed to effectively execute a PBSD multi-objective optimization procedure, namely genetic and evolutionary strategies algorithms. Next, multiple options for defining objective functions and constraints are presented to illustrate the versatility of structural optimization. Taken together, this report illustrates the unique aspects of PBSD. As PBSD moves to the forefront of design methodology, the subjects discussed serve to familiarize engineers with the advantages, possibilities, and finer workings of this powerful new design methodology.
3

Νέα υβριδική μέθοδος δυνάμεων/μετατοπίσεων αντισεισμικού σχεδιασμού χωρικών μεταλλικών κατασκευών / A hybrid force/displacement seismic design method for three-dimensional steel building frames

Τζίμας, Άγγελος 04 September 2013 (has links)
Στην παρούσα εργασία παρουσιάζεται μία νέα βασισμένη στην επιτελεστικότητα μέθοδος αντισεισμικού σχεδιασμού χωρικών μεταλλικών κατασκευών, οι οποίες υπόκεινται σε σεισμικές διεγέρσεις μακρινού πεδίου. Η μέθοδος αυτή συνδυάζει τα πλεονεκτήματα της μεθόδου σχεδιασμού με βάση τις δυνάμεις και με βάση της μετατοπίσεις και γι’ αυτό ονομάζεται υβριδική δυνάμεων-μετατοπίσεων (ΥΔΜ) μέθοδος. Για τη δημιουργία της προτεινόμενης μεθόδου γίνεται παραμετρική σεισμική μελέτη κανονικών καμπτικών μεταλλικών κτιρίων με και χωρίς τυχηματικές εκκεντρότητες, καθώς και μεταλλικών κτιρίων τα οποία εμφανίζουν γεωμετρικές μη κανονικότητες λόγω ανομοιόμορφης καθ’ ύψος κατανομής μάζας και λόγω παρουσίας εσοχών. Αρχικά γίνεται μια βιβλιογραφική ανασκόπηση για τις ήδη υπάρχουσες μεθόδους, όσον αφορά στο σχεδιασμό και στην εκτίμηση της ανελαστικής σεισμικής απόκρισης επίπεδων και χωρικών κατασκευών. Στη συνέχεια περιγράφεται η επιλογή των παραμέτρων και η όλη διαδικασία που ακολουθήθηκε για τη δημιουργία μίας βάσης δεδομένων σεισμικής απόκρισης η οποία απαίτησε 43176 μη γραμμικές δυναμικές αναλύσεις. Με βάση την στατιστική επεξεργασία που έγινε προέκυψαν εμπειρικές σχέσεις αντισεισμικού σχεδιασμού, οι οποίες καθιστούν δυνατό τον έλεγχο της βλάβης κατά το σχεδιασμό νέων κατασκευών και οι οποίες λαμβάνουν υπόψη την επιρροή διαφόρων παραμέτρων, όπως ο αριθμός ανοιγμάτων, ο αριθμός ορόφων, η μορφή της κάτοψης, καθώς και η μη κανονικότητα της κατασκευής. Επιπλέον εξετάστηκε η επιρροή της φυσικής μονοαξονικής εκκεντρότητας, μεταξύ κέντρου μάζας και κέντρου δυσκαμψίας στην ανελαστική σεισμική απόκριση χωρικών κατασκευών με μεικτό σύστημα ανάληψης σεισμικών δυνάμεων. Ωστόσο, επειδή ο αριθμός των κτιρίων που χρησιμοποιήθηκαν ήταν μικρός, δεν έγινε προσπάθεια κατασκευής κάποιων εμπειρικών σχέσεων από τα αποτελέσματα που προέκυψαν για αυτήν την περίπτωση. Τα πλεονεκτήματα της νέας ΥΔΜ μεθόδου αντισεισμικού σχεδιασμού, παρουσιάζονται μέσω τριών παραδειγμάτων, όπου η προτεινόμενη μέθοδος συγκρίνεται με τη μέθοδο σχεδιασμού με βάση τις δυνάμεις στην οποία βασίζονται όλοι σχεδόν οι υπάρχοντες αντισεισμικοί κανονισμοί. Από τη σύγκριση που γίνεται προκύπτει ότι, σε αντίθεση με τη μέθοδο των δυνάμεων, η ΥΔΜ μέθοδος μπορεί να κάνει κατά το σχεδιασμό άμεσο έλεγχο της βλάβης. / This dissertation proposes a preliminary performance-based seismic design method for three-dimensional steel building frames under ordinary (i.e., without near fault effects) ground motions. This method combines the advantages of the well-known force-based and displacement-based seismic design methods in a hybrid force/displacement design scheme. The proposed method was developed based on the results of an extensive parametric study involving the inelastic seismic response of regular and irregular moment resisting frames (MRFs). The regular MRFs are structures with and without the presence of accidental eccentricities, whereas the irregular MRFs, are structures with vertical mass irregularities and structures with setbacks. In total 146 buildings have been studied. The results of 43176 nonlinear dynamic analyses were post-processed in order to create a databank with the response quantities of interest. The main parameters that affect the inelastic response of the examined structures were recognised after the statistical analysis of the created response. Based on regression analysis, a procedure in terms of simple formulae for estimating the maximum roof displacement, the maximum interstorey drift ratio and the maximum rotation ductility along the height of the frame was developed. In addition, the inelastic seismic response of 20 buildings with natural eccentricities has been studied, which combines MRFs with buckling restrained braces. However, the conclusions of this case cannot be generalized, because only few cases were investigated. Comparison of the proposed method with the procedures adopted in current seismic design codes demonstrated the efficiency of the former. The results revealed that the proposed procedure seems to be more rational and efficient than the procedures used in the current seismic design codes. Nonlinear time history analyses proved the consistency of the proposed method to accurately estimate inelastic deformation demands and the tendency of the current seismic design codes to overestimate the maximum roof displacement and underestimate the maximum interstorey drift ratio along the height of the frames.
4

Seismic design and performance of hospital structures equipped with buckling-restrained braces in the lakebed zone of Mexico City

Guerrero Bobadilla, Hector January 2016 (has links)
Hospitals are regarded as some of the most important structures in society due to the service that they provide. Knowing this, governments spend large amounts of money on these facilities. Also, codes of design require to provide them more reserve capacity than that for conventional structures. However, large damages (such as collapses and permanent or temporary interruptions of their functionality) have still been observed in hospitals during strong earthquakes. Unfortunately, it is precisely after this type of event that their service is in high demand and failure in providing that service could lead to further disastrous or fatal consequences. Therefore, the use of protective technologies, combined with rational procedures of design, would help to reduce damage and probable losses of functionality in hospital structures. In this thesis, a procedure for seismic design of structures equipped with a type of protective technology, namely, buckling-restrained braces (BRBs), is proposed. Then, the results of experimental and numerical studies are presented to understand the benefits of using BRBs in structures. This study highlights that BRBs are very effective to dissipate seismic energy and can act as structural fuses, i.e. disposable devices that may be replaced after an earthquake without interruptions in the functionality of the structure. One of the advantages of the proposed procedure is that it takes into account explicitly the characteristics and contributions of both, the main structure and the BRBs. It is based on the assumption that a structure protected with BRBs can rationally be represented by a dual SDOF system whose parts yield at different displacement levels. Other advantages include: 1) better control of the displacement demands on the structure; 2) achievement of the fuse concept beforehand; and 3) rapid assessment of the probabilistic performance of the structure. The experimental studies consisted of testing steel and concrete models, with and without BRBs, on a shaking table. In addition to calibrate and validate the proposed method of design, the tests have helped to find that, due to BRBs: 1) the damping ratio is increased significantly; and 2) the dynamic response, to ground motions characteristic of the lakebed zone of Mexico City, is reduced in terms of lateral displacements, inter-storey drifts, floor velocities and floor accelerations. The numerical studies are: 1) a study of the response of typical hospitals improved with BRBs; 2) a study of residual displacements in conventional and dual systems; and 3) evaluation of the economic benefits of using BRBs in structures. On these studies, hypothetical hospitals located in the lakebed zone of Mexico City were considered. The results show that the use of BRBs is very beneficial in medium- and low-rise buildings, while adverse effects may be observed in high-rise structures.
5

Development of Computational Tools for Characterization, Evaluation, and Modification of Strong Ground Motions within a Performance-Based Seismic Design Framework

Syed, Riaz 27 January 2004 (has links)
One of the most difficult tasks towards designing earthquake resistant structures is the determination of critical earthquakes. Conceptually, these are the ground motions that would induce the critical response in the structures being designed. The quantification of this concept, however, is not easy. Unlike the linear response of a structure, which can often be obtained by using a single spectrally modified ground acceleration history, the nonlinear response is strongly dependent on the phasing of ground motion and the detailed shape of its spectrum. This necessitates the use of a suite (bin) of ground acceleration histories having phasing and spectral shapes appropriate for the characteristics of the earthquake source, wave propagation path, and site conditions that control the design spectrum. Further, these suites of records may have to be scaled to match the design spectrum over a period range of interest, rotated into strike-normal and strike-parallel directions for near-fault effects, and modified for local site conditions before they can be input into time-domain nonlinear analysis of structures. The generation of these acceleration histories is cumbersome and daunting. This is especially so due to the sheer magnitude of the data processing involved. The purpose of this thesis is the development and documentation of PC-based computational tools (hereinafter called EQTools) to provide a rapid and consistent means towards systematic assembly of representative strong ground motions and their characterization, evaluation, and modification within a performance-based seismic design framework. The application is graphics-intensive and every effort has been made to make it as user-friendly as possible. The application seeks to provide processed data which will help the user address the problem of determination of the critical earthquakes. The various computational tools developed in EQTools facilitate the identification of severity and damage potential of more than 700 components of recorded earthquake ground motions. The application also includes computational tools to estimate the ground motion parameters for different geographical and tectonic environments, and perform one-dimensional linear/nonlinear site response analysis as a means to predict ground surface motions at sites where soft soils overlay the bedrock. While EQTools may be used for professional practice or academic research, the fundamental purpose behind the development of the software is to make available a classroom/laboratory tool that provides a visual basis for learning the principles behind the selection of ground motion histories and their scaling/modification for input into time domain nonlinear (or linear) analysis of structures. EQTools, in association with NONLIN, a Microsoft Windows based application for the dynamic analysis of single- and multi-degree-of-freedom structural systems (Charney, 2003), may be used for learning the concepts of earthquake engineering, particularly as related to structural dynamics, damping, ductility, and energy dissipation. / Master of Science

Page generated in 0.0683 seconds