• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identifying Genetic Factors and Processes Involved in the Cardiac Perinatal Transitional Program

Kouri, Lara 03 May 2011 (has links)
Cardiomyocyte perinatal development is characterized by the transition from a hyperplastic to a hypertrophic growth. We hypothesize that genetic factors and processes in the cardiac perinatal transitional program can be identified by a systematic analysis of different stages in heart development. Microarray expression patterning of mRNAs and microRNAs uncovered a perinatal cardiogenomic switch between 5 and 7 days post-birth. Gene ontology analysis revealed cellular and metabolic processes as highly representative Biological Processes. Moreover, approximately 40% of known mice transcription factors are significantly (p<0.05) fluctuating between embryonic day 19 and 10 days post-birth. As the heart matures, cardiomyocytes progressively exit cell cycle with day 5 as a pivotal point. Hypertrophy entails cardiomyocyte binucleation which may be promoted by Protein Regulator of Cytokinesis (Prc1) and its interactors. Temporal cardiac transcription expression analysis provides insight into underlining effectors within the cardiac perinatal transitional program as well as cardiac pathology.
2

Identifying Genetic Factors and Processes Involved in the Cardiac Perinatal Transitional Program

Kouri, Lara 03 May 2011 (has links)
Cardiomyocyte perinatal development is characterized by the transition from a hyperplastic to a hypertrophic growth. We hypothesize that genetic factors and processes in the cardiac perinatal transitional program can be identified by a systematic analysis of different stages in heart development. Microarray expression patterning of mRNAs and microRNAs uncovered a perinatal cardiogenomic switch between 5 and 7 days post-birth. Gene ontology analysis revealed cellular and metabolic processes as highly representative Biological Processes. Moreover, approximately 40% of known mice transcription factors are significantly (p<0.05) fluctuating between embryonic day 19 and 10 days post-birth. As the heart matures, cardiomyocytes progressively exit cell cycle with day 5 as a pivotal point. Hypertrophy entails cardiomyocyte binucleation which may be promoted by Protein Regulator of Cytokinesis (Prc1) and its interactors. Temporal cardiac transcription expression analysis provides insight into underlining effectors within the cardiac perinatal transitional program as well as cardiac pathology.
3

Identifying Genetic Factors and Processes Involved in the Cardiac Perinatal Transitional Program

Kouri, Lara 03 May 2011 (has links)
Cardiomyocyte perinatal development is characterized by the transition from a hyperplastic to a hypertrophic growth. We hypothesize that genetic factors and processes in the cardiac perinatal transitional program can be identified by a systematic analysis of different stages in heart development. Microarray expression patterning of mRNAs and microRNAs uncovered a perinatal cardiogenomic switch between 5 and 7 days post-birth. Gene ontology analysis revealed cellular and metabolic processes as highly representative Biological Processes. Moreover, approximately 40% of known mice transcription factors are significantly (p<0.05) fluctuating between embryonic day 19 and 10 days post-birth. As the heart matures, cardiomyocytes progressively exit cell cycle with day 5 as a pivotal point. Hypertrophy entails cardiomyocyte binucleation which may be promoted by Protein Regulator of Cytokinesis (Prc1) and its interactors. Temporal cardiac transcription expression analysis provides insight into underlining effectors within the cardiac perinatal transitional program as well as cardiac pathology.
4

Identifying Genetic Factors and Processes Involved in the Cardiac Perinatal Transitional Program

Kouri, Lara January 2011 (has links)
Cardiomyocyte perinatal development is characterized by the transition from a hyperplastic to a hypertrophic growth. We hypothesize that genetic factors and processes in the cardiac perinatal transitional program can be identified by a systematic analysis of different stages in heart development. Microarray expression patterning of mRNAs and microRNAs uncovered a perinatal cardiogenomic switch between 5 and 7 days post-birth. Gene ontology analysis revealed cellular and metabolic processes as highly representative Biological Processes. Moreover, approximately 40% of known mice transcription factors are significantly (p<0.05) fluctuating between embryonic day 19 and 10 days post-birth. As the heart matures, cardiomyocytes progressively exit cell cycle with day 5 as a pivotal point. Hypertrophy entails cardiomyocyte binucleation which may be promoted by Protein Regulator of Cytokinesis (Prc1) and its interactors. Temporal cardiac transcription expression analysis provides insight into underlining effectors within the cardiac perinatal transitional program as well as cardiac pathology.

Page generated in 0.0688 seconds