• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 16
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 38
  • 33
  • 26
  • 12
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Peripheral nerve regeneration a study of surgical and biological techniques to enhance functional regeneration /

Ladak, Adil. January 2009 (has links)
Thesis (M.Sc.)--University of Alberta, 2009. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Experimental Surgery, Department of Surgery. Title from pdf file main screen (viewed on September 15, 2009). Includes bibliographical references.
2

Peripheral nerve function in relation to hibernation

Kehl, Theodore Herbert, January 1961 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1961. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
3

The effects of pulsed electromagnetic field on peripheral nerve regeneration.

January 1990 (has links)
by Leung Shiu Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1990. / Bibliography: leaves 137-146. / Chapter CHAPTER ONE --- Introduction --- p.1 / Chapter 1.1 --- Surgical intervention done for nerve injury --- p.1 / Chapter 1.2 --- Rehabilitation procedures after nerve injuries --- p.2 / Chapter 1.3 --- Frustrating result of recovery after nerve injuries --- p.3 / Chapter 1.4 --- Reasons for the poor results --- p.3 / Chapter 1.5 --- Objective of the study --- p.5 / Chapter 1.6 --- Hypothesis and organization of the study --- p.6 / Chapter CHAPTER TWO --- The effects of pulsed electromagnetic field on peripheral nerve regeneration --- p.8 / Chapter 2.1 --- Electrical field and nerve growth --- p.8 / Chapter 2.2 --- Experimental findings of effect of the electromagnetic field on peripheral nerve regeneration --- p.9 / Chapter 2.3 --- The diversity of interest --- p.17 / Chapter CHAPTER THREE --- Physiological effects of the pulsed electromagnetic field --- p.18 / Chapter 3.1 --- The conventional use of electromagnetic field in musculoskeletal rehabilitation --- p.18 / Chapter 3.2 --- The pulsed electromagnetic field --- p.18 / Chapter 3.3 --- Nature of the pulsed electromagnetic field with a carrier frequency of 27.12 MHz --- p.19 / Chapter 3.4 --- Therapeutic effects of the pulsed electromagnetic field --- p.20 / Chapter 3.5 --- Some experimental results of the pulsed electromagnetic field --- p.20 / Chapter 3.6 --- Discussion --- p.25 / Chapter CHAPTER FOUR --- Methology --- p.27 / Chapter 4.1 --- Experimental animals and aneasthesia --- p.27 / Chapter 4.2 --- Models of lesions --- p.28 / Chapter 4.3 --- Sample size and grouping of the experimental rats --- p.35 / Chapter 4.4 --- Pulsed electromagnetic field stimulation --- p.37 / Chapter 4.5 --- Methods of evaluating the nerve regeneration --- p.38 / Chapter 4.6 --- Statistical analysis --- p.53 / Chapter CHAPTER FIVE --- Results --- p.54 / Chapter 5.1 --- Directly repaired groups --- p.54 / Chapter 5.2 --- Crushed groups --- p.62 / Chapter 5.3 --- Artery bridge groups --- p.73 / Chapter 5.4 --- Sham operated groups --- p.84 / Chapter 5.5 --- Electron microscopic examination --- p.90 / Chapter 5.6 --- Summary of all the data --- p.94 / Chapter CHAPTER SIX --- Discuss ion --- p.96 / Chapter CHAPTER SEVEN --- Conclusion --- p.103 / Chapter 7.1 --- Restatement of the experimental objective and hypothesis --- p.103 / Chapter 7.2 --- Conclusion --- p.103 / Chapter 7.3 --- Suggestions for furthur research --- p.104 / Chapter 7.4 --- Clinical Implication --- p.105 / Chapter APPENDIX I --- Determination of the duration of survival of the experimental animal --- p.106 / Chapter APPENDIX II --- Perfusion of rats --- p.115 / Chapter APPENDIX III --- Horseradish peroxidase and tetramethvlbezindine reaction --- p.118 / Chapter APPENDIX IV --- Histology fixation --- p.120 / Chapter APPENDIX V --- Determination of the Position of the Histology Specimens --- p.121 / Chapter APPENDIX VI --- Raw Data Collected in the Experiment --- p.132 / REFERENCE --- p.137
4

Pharmacological testing in the spared nerve injury model of neuropathic pain /

Rode, Frederik. January 2005 (has links)
Ph.D.
5

The role of galanin in chronic pain mechanisms /

Hygge Blakeman, Karin, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 5 uppsatser.
6

Pituitary adenylate cyclase activating peptide (PACAP) an experimental study on the expression and regulation in the peripheral nervous system /

Moller, Kristian. January 1997 (has links)
Thesis (doctoral)--Lund University, 1997. / Added t.p. with thesis statement inserted.
7

Pituitary adenylate cyclase activating peptide (PACAP) an experimental study on the expression and regulation in the peripheral nervous system /

Moller, Kristian. January 1997 (has links)
Thesis (doctoral)--Lund University, 1997. / Added t.p. with thesis statement inserted.
8

Characterisation of the spared nerve injury model of neuropathic pain /

Erichsen, Helle Kirstein. January 2003 (has links)
Ph.D.
9

On laminins and laminin receptors and their role in regeneration and myelination of the peripheral nerve /

Wallquist, Wilhelm, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol inst., 2004. / Härtill 4 uppsatser.
10

Effects of Chemical and Radiation Sterilisation on the Biological and Biomechanical Properties of Decellularised Porcine Peripheral Nerves

Holland, J.D.R., Webster, G., Rooney, P., Wilshaw, Stacy-Paul, Jennings, L.M., Berry, H.E. 29 June 2021 (has links)
yes / There is a clinical need for novel graft materials for the repair of peripheral nerve defects. A decellularisation process has been developed for porcine peripheral nerves, yielding a material with potentially significant advantages over other devices currently being used clinically (such as autografts and nerve guidance conduits). Grafts derived from xenogeneic tissues should undergo sterilisation prior to clinical use. It has been reported that sterilisation methods may adversely affect the properties of decellularised tissues, and therefore potentially negatively impact on the ability to promote tissue regeneration. In this study, decellularised nerves were produced and sterilised by treatment with 0.1% (v/v) PAA, gamma radiation (25-28 kGy) or E Beam (33-37 kGy). The effect of sterilisation on the decellularised nerves was determined by cytotoxicity testing, histological staining, hydroxyproline assays, uniaxial tensile testing, antibody labelling for collagen type IV, laminin and fibronectin in the basal lamina, and differential scanning calorimetry. This study concluded that decellularised nerves retained biocompatibility following sterilisation. However, sterilisation affected the mechanical properties (PAA, gamma radiation), endoneurial structure and basement membrane composition (PAA) of decellularised nerves. No such alterations were observed following E Beam treatment, suggesting that this method may be preferable for the sterilisation of decellularised porcine peripheral nerves.

Page generated in 0.0459 seconds