• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 54
  • 54
  • 54
  • 30
  • 15
  • 14
  • 13
  • 12
  • 11
  • 11
  • 9
  • 9
  • 7
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A PMAC motor drive with a minimum number of sensors / Li Ying.

Li, Ying, 1963 Mar. 3- January 2002 (has links)
"October 2002" / Bibliography: p. 219-228. / xi, 229 p. : ill. (some col.), plates (col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Proposes a robust indirect position sensing technique implemented in real time using a DSP based motor controller. This is based on a rotor position estimation using the measured phase voltages and currents of the motor. An incremental algorithm is used to estimate the flux linkage increments, which eliminates the integration involved in the flux linkage estimation. This feature provides a wider operating speed range and robustness. / Thesis (Ph.D.)--University of Adelaide, Dept. of Electrical and Electronic Engineering, 2002
22

Extended EMF Observer for Wide Speed Range Sensorless Control of Salient-pole Synchronous Motor Drives

Okuma, Shigeru, Doki, Shinji, Ohnuma, Takumi January 2010 (has links)
No description available.
23

Design, analysis, control and application of permanent magnet brushless dual-memory machines

Li, Fuhua, 李富华 January 2014 (has links)
Conventional PM machines have fixed PM excitation and can only perform flux-weakening by controlling the d-axis current. This current incurs the power dissipation and reduces the efficiency during flux-weakening operations. Memory machines change this situation by introducing the memory function, namely magnetizing or reversely magnetizing Al-Ni-Co PMs to change the air-gap flux density. This provides another new way to realizing flux-weakening. And the elimination of the flux-weakening d-axis current improves the overall efficiency. But the single-memory machines have lower power density due to the low-energy Al-Ni-Co PMs. By incorporating the memory concept and with the intention of improving the power density, the DC-excited PMBL dual-memory machines have been proposed and implemented, based on two kinds of PMs which are high-coercivity Nd-Fe-B PMs and low-coercivity Al-Ni-Co PMs. The Nd-Fe-B PMs provide a strong magnetic field to excite high air-gap flux density; while the Al-Ni-Co PMs can be forward magnetized to strengthen the magnetic field produced by Nd-Fe-B PMs or can be reversely magnetized to cancel that field. Consequently the air-gap flux density can be controlled within a wide range. A series of design principles on such kind of dual-memory machine are devised for guidance. The key design principles involve how to determine the number of salient poles on the stator and rotor, how to choose the surface areas and thicknesses of the two kind of PM pieces and how to size the rotor dimension. Generally, increase on the proportion of Nd-Fe-B PMs will raise the base field and the load capacity. On the other hand, increment on the proportion of Al-Ni-Co PMs will extend the controllable flux range. Analysis is also carried out on the equivalent magnetic circuit to formulate the magnetizing force exerted on Al-Ni-Co PMs. The machine model is analyzed by using time-stepping FEM (TS-FEM) and co-simulation of FEM software and Matlab Simulink. The dynamic reverse magnetizing processes are simulated and presented in details under different magnetizing current. In addition the effect of adding iron bridges between the two kinds PMs is also evaluated by simulations. Furthermore, the control methods are evaluate by simulations and experiments. The direct torque control (DTC) scheme is adapted to this doubly-salient dual-memory machine and a torque estimator is proposed to facilitate the DTC method. Both of the simulation results and the experimental results confirm the validity of the proposed design principles and the effectiveness of the control methods. Eventually, this dual-memory machine is proposed as a pole-changing wind power generator and a pole-changing EV machine. Simulation and experimental results have verified the validity of the pole-changing scheme and the pole-protection scheme. / published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
24

A comparison of permanent magnet motor structures for traction drive applications in hybrid electric vehicles /

Han, Lin, 1982- January 2008 (has links)
This thesis presents a detailed comparison of the torque-speed characteristics of three permanent magnet synchronous machine designs based on how the magnets are mounted. The machines investigated are an interior permanent magnet machine, an interior-rotor surface-mounted machine and an exterior-rotor surface-mounted machine. They are designed for traction drives in hybrid electric vehicles. Two sets of comparisons based on the same machine volume and starting torque are performed. Important issues, such as machine mass and cost, cogging torque, and flux-weakening capability are addressed. Computer simulations were performed to estimate their performances and the results are presented. Design guidelines and tradeoffs of their performances are extracted from the simulation results. Relative strengths and limitations of different PM machine types are highlighted.
25

A segmented interior permanent magnet synchronous machine with wide field-weakening range.

Dutta, Rukmi, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2007 (has links)
Many high performance drive applications require wide Constant Power Speed Range (CPSR) for efficient use of energy. The examples of such applications are the starter alternator system of automobiles proposed for the 42V PowerNet, traction in the hybrid/electric vehicle, wind power generator etc. The Permanent Magnet (PM) machine is the natural choice of such niche applications because of their higher efficiency and compact size. However, the Surface Permanent Magnet (SPM) machine with sine distributed winding and radially-laminated Interior Permanent Magnet (IPM) machine with conventional structure has very limited or zero flux-weakening capability. The flux-weakening capability of the SPM machine can be improved by using concentrated, fractional-slot stator but here well-known advantages of the sine distributed winding are needed to be compromised. In the IPM machine, fluxweakening was improved using axial lamination and more than two magnet layers per pole. However, the construction of such IPM machine is complicated and expensive. This thesis presents design and analysis of a new type of the Interior Permanent Magnet (IPM) machine that have a very wide Constant Power Speed Range (CPSR) without compromising simplicity of construction and advantages of the distribution winding. In the new IPM machine, the magnet poles were segmented in the radially direction and the iron bridges between magnet segments provide for additional paths of flux-canalization to give the rotor an inherent capability of fluxweakening. Consequently, a very wide constant power speed range can be achieved in such machines. The proposed IPM machine of this work was referred as the Segmented IPM machine. The thesis focuses on the optimization of the Segmented IPM machine in a 42V environment of the automobile. First, for the conceptual evaluation a 4 pole, 550W Segmented Magnet IPM machine was optimized using finite element analysis. The parameters were calculated for prediction of the steady-state and transient performances. The torque- and power-speed capability were estimated using time-step, circuit-coupled finite element analysis. The cogging torque and variation of iron loss with frequency were also investigated during the design process. A prototype machine was constructed on the basis of the optimized design. The steady-state and transient performances of the prototype machine were measured and compared with the predicted results for experimental verification. The measured performance analysis was found to match very well with the predicted results. The measured torque- and power-speed capability of the Segmented IPM machine was also compared to those of a conventional, non-segmented IPM machine of similar rating and size. The thesis also presents the optimized design of a 6kW, 12 pole Segmented Magnet IPM machine for application in the Integrated Starter Alternator (ISA) of the electric/hybrid vehicle. It can be concluded from the predicted steady-state analysis of the 6 kW, 12 pole Segmented Magnet IPM machine that it should be able to satisfy most of the required criteria of an ISA with appropriate design optimization.
26

An analysis of permanent magnet synchronous motor drive /

Zeid, Saad Muftah, January 1998 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 1999. / Bibliography: leaves 97-101.
27

Robust fault detection and diagnosis for permanent magnet synchronous motors

Liu, Li, Cartes, David. January 2006 (has links)
Thesis (Ph. D.)--Florida State University, 2006. / Advisor: David A. Cartes, Florida State University, College of Engineering, Dept. of Mechanical Engineering. Title and description from dissertation home page (viewed Sept. 18, 2006). Document formatted into pages; contains xii, 133 pages. Includes bibliographical references.
28

Geometric Design Optimization of Brushless Permanent Magnet Motors

Martin, Benjamin C. January 2009 (has links) (PDF)
No description available.
29

A comparison of permanent magnet motor structures for traction drive applications in hybrid electric vehicles /

Han, Lin, 1982- January 2008 (has links)
No description available.
30

Open-loop control of a super high-speed miniaturized PMSM using the TMS320LF2407 digital signal processor

Seigneur, Hubert P. 01 April 2003 (has links)
No description available.

Page generated in 0.0927 seconds