Spelling suggestions: "subject:"permeability prediction"" "subject:"ermeability prediction""
1 |
Improved permeability prediction using multivariate analysis methodsXie, Jiang 15 May 2009 (has links)
Predicting rock permeability from well logs in uncored wells is an important task in reservoir characterization. Due to the high costs of coring and laboratory analysis, typically cores are acquired in only a few wells. Since most wells are logged, the common practice is to estimate permeability from logs using correlation equations developed from limited core data. Most commonly, permeability is estimated from various well logs using statistical regression.
For sandstones, often the logs of permeability can be correlated with porosity, but in carbonates the porosity permeability relationship tends to be much more complex and erratic. For this reason permeability prediction is a critical aspect of reservoir characterization in complex reservoirs such as carbonate reservoirs. In order to improve the permeability estimation in these reservoirs, several statistical regression techniques have already been tested in previous work to correlate permeability with different well logs. It has been shown that statistical regression for data correlation is quite promising in predicting complex reservoirs. But using all the possible well logs to predict permeability is not appropriate because the possibility of spurious correlation increases if you use more well logs. In statistics, variable selection is used to remove unnecessary independent variables and give a better prediction. So we apply variable selection to the permeability prediction procedures in order to further improve permeability estimation.
We present three approaches to further improve reservoir permeability prediction based on well logs via data correlation and variable selection in this research. The first is a combination of stepwise algorithm with ACE technique. The second approach is the application of tree regression and cross-validation. The third is multivariate adaptive regression splines.
Three methods are tested and compared at two complex carbonate reservoirs in west Texas: Salt Creek Field Unit (SCFU) and North Robertson Unit (NRU). The result of SCFU shows that permeability prediction is improved by applying variable selection to non-parametric regression ACE while tree regression is unable to predict permeability because it can not preserve the continuity of permeability. In NRU, none of these three methods can predict permeability accurately. This is due to the high complexity of NRU reservoir and measurement accuracy. In this reservoir, high permeability is discrete from low permeability, which makes prediction even more difficult.
Permeability predictions based on well logs in complex carbonate reservoirs can be further improved by selecting appropriate well logs for data correlation. In comparing the relative predictive performance of the three regression methods, the stepwise with ACE method appears to outperform the other two methods.
|
2 |
Determination Of Flow Units For Carbonate Reservoirs By Petrophysical - Based MethodsYildirim Akbas, Ceylan 01 October 2005 (has links) (PDF)
Characterization of carbonate reservoirs by flow units is a practical way of reservoir zonation. This study represents a petrophysical-based method that uses well loggings and core plug data to delineate flow units within the most productive carbonate reservoir of Derdere Formation in Y field, Southeast Turkey.
Derdere Formation is composed of limestones and dolomites. Logs from the 5 wells are the starting point for the reservoir characterization. The general geologic framework obtained from the logs point out for discriminations within the formation. 58 representative core plug data from 4 different wells are utilized to better understand the petrophysical framework of the formation. The plots correlating petrophysical parameters and the frequency histograms suggest the presence of distinctive reservoir trends. These discriminations are also represented in Winland porosity-permeability crossplots resulted in clusters for different port-sizes that are responsible for different flow characteristics. Although the correlation between core plug porosity and air permeability yields a good correlation coefficient, the formation has to be studied within units due to differences in port-sizes and reservoir process speed.
Linear regression and multiple regression analyses are used for the study of each unit. The results are performed using STATGRAPH Version Plus 5.1 statistical software. The permeability models are constructed and their reliabilities are compared by the regression coefficients for predictions in un-cored sections.
As a result of this study, 4 different units are determined in the Derdere Formation by using well logging data, and core plug analyses with the help of geostatistical methods. The predicted permeabilities for each unit show good correlations with the calculated ones from core plugs. Highly reliable future estimations can be based on the derived methods.
|
3 |
Reservoir description with well-log-based and core-calibrated petrophysical rock classificationXu, Chicheng 25 September 2013 (has links)
Rock type is a key concept in modern reservoir characterization that straddles multiple scales and bridges multiple disciplines. Reservoir rock classification (or simply rock typing) has been recognized as one of the most effective description tools to facilitate large-scale reservoir modeling and simulation. This dissertation aims to integrate core data and well logs to enhance reservoir description by classifying reservoir rocks in a geologically and petrophysically consistent manner. The main objective is to develop scientific approaches for utilizing multi-physics rock data at different time and length scales to describe reservoir rock-fluid systems. Emphasis is placed on transferring physical understanding of rock types from limited ground-truthing core data to abundant well logs using fast log simulations in a multi-layered earth model. Bimodal log-normal pore-size distribution functions derived from mercury injection capillary pressure (MICP) data are first introduced to characterize complex pore systems in carbonate and tight-gas sandstone reservoirs. Six pore-system attributes are interpreted and integrated to define petrophysical orthogonality or dissimilarity between two pore systems of bimodal log-normal distributions. A simple three-dimensional (3D) cubic pore network model constrained by nuclear magnetic resonance (NMR) and MICP data is developed to quantify fluid distributions and phase connectivity for predicting saturation-dependent relative permeability during two-phase drainage. There is rich petrophysical information in spatial fluid distributions resulting from vertical fluid flow on a geologic time scale and radial mud-filtrate invasion on a drilling time scale. Log attributes elicited by such fluid distributions are captured to quantify dynamic reservoir petrophysical properties and define reservoir flow capacity. A new rock classification workflow that reconciles reservoir saturation-height behavior and mud-filtrate for more accurate dynamic reservoir modeling is developed and verified in both clastic and carbonate fields. Rock types vary and mix at the sub-foot scale in heterogeneous reservoirs due to depositional control or diagenetic overprints. Conventional well logs are limited in their ability to probe the details of each individual bed or rock type as seen from outcrops or cores. A bottom-up Bayesian rock typing method is developed to efficiently test multiple working hypotheses against well logs to quantify uncertainty of rock types and their associated petrophysical properties in thinly bedded reservoirs. Concomitantly, a top-down reservoir description workflow is implemented to characterize intermixed or hybrid rock classes from flow-unit scale (or seismic scale) down to the pore scale based on a multi-scale orthogonal rock class decomposition approach. Correlations between petrophysical rock types and geological facies in reservoirs originating from deltaic and turbidite depositional systems are investigated in detail. Emphasis is placed on the cause-and-effect relationship between pore geometry and rock geological attributes such as grain size and bed thickness. Well log responses to those geological attributes and associated pore geometries are subjected to numerical log simulations. Sensitivity of various physical logs to petrophysical orthogonality between rock classes is investigated to identify the most diagnostic log attributes for log-based rock typing. Field cases of different reservoir types from various geological settings are used to verify the application of petrophysical rock classification to assist reservoir characterization, including facies interpretation, permeability prediction, saturation-height analysis, dynamic petrophysical modeling, uncertainty quantification, petrophysical upscaling, and production forecasting. / text
|
Page generated in 0.0789 seconds