• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 317
  • 107
  • 47
  • 29
  • 13
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 654
  • 115
  • 105
  • 103
  • 90
  • 88
  • 76
  • 72
  • 63
  • 61
  • 61
  • 61
  • 60
  • 57
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Studies of structures, transport and magnetic properties of doped novel three-dimensional perovskite compounds

Farhoudi, Mohammad Mehdi. January 2009 (has links)
Thesis (Ph.D.)--University of Wollongong, 2009. / Typescript. Includes bibliographical references: leaf 174-191.
12

The dielectric behavior of perovskite-related manganese oxides with stretched bonds or multiferroic properties

Denyszyn, Jonathan Charles. January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
13

Preparation and properties of epitaxial thin films of oxide materials with a perovskite structure

Li, To-kit., 李道傑. January 2002 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
14

Synthesis and characterisation of low-dimensional oxides

Moore, Caroline A. January 2003 (has links)
No description available.
15

The electronic properties of mixed metal iridates

Blake, Graeme Robert January 1999 (has links)
No description available.
16

Preparation and characterization of halide-doped perovskite-type catalysts for oxidative dehydrogenation of ethane.

January 2001 (has links)
by Chan Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references. / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.iv / Table of contents --- p.v / List of Tables --- p.ix / List of Figures --- p.xii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Literature review of the ODE reaction over different catalysts --- p.4 / Chapter 1.2.1 --- The alkali metal and the alkaline earth metal oxide catalysts --- p.4 / Chapter 1.2.2 --- Rare earth oxide catalysts --- p.5 / Chapter 1.2.3 --- Transition metal oxide catalysts --- p.6 / Chapter 1.3 --- Perovskite-type oxide catalysts --- p.7 / Chapter 1.3.1 --- The structure of perovskites oxide --- p.7 / Chapter 1.3.2 --- Preparation method of perovskites oxide --- p.8 / Chapter 1.3.3 --- Literature review of perovskites oxide catalysts --- p.9 / Chapter 1.4 --- ODE mechanism --- p.11 / Chapter 1.5 --- Factors affecting the catalytic performance of catalysts --- p.12 / Chapter 1.6 --- surface and bulk characterization of perovskites-type oxide catalysts --- p.13 / Chapter 1.7 --- Objective of this research project --- p.15 / Reference --- p.15 / Chapter Chapter 2 --- Instrumentation / Chapter 2.1 --- Introduction --- p.20 / Chapter 2.2 --- Assessment catalytic performance --- p.20 / Chapter 2.3 --- "Brunauer, Emmett and Teller (BET)" --- p.23 / Chapter 2.3.1 --- Theory --- p.23 / Chapter 2.3.2 --- Experimental --- p.25 / Chapter 2.4 --- X-ray Diffraction (XRD) --- p.25 / Chapter 2.4.1 --- Theory --- p.25 / Chapter 2.4.2 --- Instrumentation --- p.26 / Chapter 2.5 --- X-ray Photoelectron Spectroscopy (XPS) --- p.28 / Chapter 2.5.1 --- Basic principles --- p.28 / Chapter 2.5.2 --- Qualitative analysis --- p.29 / Chapter 2.5.2.1. --- Chemical shift peaks --- p.29 / Chapter 2.5.2.2. --- Auger peaks --- p.30 / Chapter 2.5.2.3. --- Shake-up satellites --- p.30 / Chapter 2.5.3 --- Quantitative analysis --- p.31 / Chapter 2.5.3.1 --- Surface sensitivity and sampling depth --- p.31 / Chapter 2.5.3.2 --- Atomic concentration determination --- p.31 / Chapter 2.5.4. --- Instrumentation --- p.32 / Chapter 2.5.4.1 --- Ultra-high Vacuum --- p.32 / Chapter 2.5.4.2 --- Sample Introduction System --- p.33 / Chapter 2.5.4.3 --- X-ray Source --- p.33 / Chapter 2.5.4.4 --- Data processing --- p.34 / Chapter 2.6 --- O2-Temperature Programmed Desorption (02-TPD) --- p.37 / Chapter 2.7. --- Halogen Analysis --- p.37 / Chapter 2.7.1 --- The Determination of Chloride by Fajans Method --- p.37 / Chapter 2.7.2. --- The Determination of Fluoride Content by ISE Fluoride Electrode --- p.38 / Chapter 2.8. --- The Determination of Mn Concentration --- p.38 / Reference --- p.39
17

The Defect Structure and Performance of Methylammonium Lead Trihalide Thin-film Based Photovoltaics

Miller, David 06 September 2017 (has links)
In order to limit global warming to 1.5-2 °C deployed solar photovoltaic (PV) power must increase from today's 0.228 terawatts to 2-10 terawatts installed by 2030, depending on demand. These goals require increasing manufacturing capacity, which, in turn, requires lowering the cost of electricity produced by PV. However, high demand scenarios will require greater cost reductions in order to make PV generated electricity <i> as competitive </i> as it needs to be to enable this growth. It is unclear whether established PV technologies — silicon, CdTe, GaAs, or CuInxGa1-xSe2 — can achieve the necessary breakthroughs in efficiency and price. A newer technology known as the &apos;perovskite solar cell&apos; (PSC) has recently emerged as promising contender. <br>     In the last seven years the efficiency of PSCs increased by the same amount covered by established technologies in the last thirty. However, PSCs suffer from chemical instability under operating conditions and hysteresis in current-voltage measurements used to characterize power output. Characterizing the defect structures formed by this material and how they interact with device performance and degradation may allow stabilization of PSCs. To that end, this work investigates defects in perovskite solar cells, the impact of these defects on performance, and the effect of alloying and degradation on the electronically active defect structure. Chapter I gives a brief introduction, motivating research in solar cells generally and perovskites in particular as well as introducing some challenges the technology faces. Chapter II gives some background in semiconductors and the device physics of solar cells. Chapter III introduces the performance and defect characterization methods employed. Chapter IV discusses results of these measurements on methylammonium lead triiodide cells correlating defects with device performance. Chapter V applies the some of the same techniques to a series of CH3NH3Pb(I1-xBrx)3 based perovskites aged for up to 2400 hours to explore the impact of alloying and aging on the defect structure. Chapter VI discusses implications for perovskite development and directions for future research. <br>     This dissertation includes previously published co-authored material.
18

A study of polystyrene microgel particles with conjugated polymers and perovskite solar cell

Chen, Mu January 2017 (has links)
This thesis presents a study of polystyrene (PS) microgel (MG), hole transfer materials (HTMs) and perovskite solar cells (PSCs) and associated effects to combine them together to increase the stabilities of PSCs. PSCs are a disruptive technology which attract a lot of attention because of their remarkable power conversion efficiency (PCE). However, PSCs are very fragile and easy to be damaged by moisture and oxygen. The PS MGs are solvent-swellable, inherently colloidally stable, hydrophobic, and have good film-forming properties. In the study, we mixed PS MG with three different HTMs, poly(3-hexylthiophene) (P3HT), Poly[bis(4-phenyl)(2,5,6-trimethylphenyl)amine (PTAA) and 2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD) to establish a diagram of concentrations of each component to form films. We investigated the morphology and light absorption and photoluminescence (PL) of HTM-MG films spin-coated from HTM-MG dispersions. The films containing flattened MG with an aspect ratio of around 10. MG islands containing packed particles were evident for both pure MG and P3HT-MG.
19

Neutron scattering and high-resolution synchrotron X-ray diffraction study of disordered perovskite crystals-Pb(Zn[subscript 1/3]Nb[subscript 2/3])O₃ and (1-x)Pb(Zn[subscript 1/3]Nb[subscript 2/3])O₃-xPbTiO₃ /

La-Orauttapong, Duangmanee, January 2003 (has links)
Thesis (Ph. D.)--Lehigh University, 2003. / Includes vita. Includes bibliographical references (leaves 194-209).
20

Magnetoresistance and properties of half-metallic, ferromagnetic double perovskites /

Dass, Ronald Ian, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 193-195). Available also in a digital version from Dissertation Abstracts.

Page generated in 0.0496 seconds