Spelling suggestions: "subject:"perplex"" "subject:"herplex""
1 |
High temperature forearc metamorphism and consequences for sulfide stability in the Pacific Rim Terrane, British ColumbiaGeen, Alexander C. 25 June 2021 (has links)
The Pacific Rim Terrane in British Columbia is a group of fault-bound forearc metasedimentary and metaigneous rocks subcreted to Wrangellia, comprising three lithological units: the Leech River Complex (LRC), the Pandora Peak Unit (PPU), and the Pacific Rim Complex. Of these three, the LRC and PPU were subject to an elevated thermal metamorphic event which locally overprinted typical low temperature, medium pressure forearc assemblages with low greenschist through amphibolite facies assemblages. The field study shows that biotite, garnet and staurolite isograds occur concentrically in the LRC, centered on the Leech River fault, which separates the Pacific Rim Terrane from the underlying Metchosin Igneous Complex of the Crescent terrane. Local thermal overprint in the PPU is sub-biotitic and is characterized by local replacement of prehnite-pumpellyite and lawsonite-bearing assemblages with muscovite ± chlorite. Multi-method geothermobarometry shows peak metamorphic temperatures from ~230 °C in the northern PPU to ~600 °C near the Leech River fault at ~4 kbar, and isotherms are continuous across the LRC-PPU boundary. The interfoliated Tripp Creek metabasites and Eocene Walker Creek intrusions do not control the distribution of isotherms, and syn-metamorphic felsic sills rarely have contact aureoles. Intercalated metabasites show two distinct rare earth element (REE) patterns, including NMORB-like light REE depletion among most Tripp Creek metabasites, and light REE enrichment in PPU metabasites. The lack of thermal aureoles associated with metabasites, and interlayered garnetite bands with negative Ce-anomalies attributed to seafloor hydrothermal processes, suggest the Tripp Creek metabasites are not syn-metamorphic sills and formed prior to accretion. The subcretion of then recently formed oceanic crust belonging to the Crescent terrane is identified as the probable cause of anomalously high temperature forearc conditions, as well as possible proximity to an Eocene mid ocean ridge. The high temperature metamorphic rocks in the Pacific Rim Terrane document the conversion of inherited primary pyrite to pyrrhotite in carbonaceous metasediments. S-inclusive pseudosections for LRC protoliths predict a low temperature (<420 °C) narrow pyrite desulfidation window that produces pyrrhotite and releases negligible S to the fluid phase. Conversely, sulfide petrography in the LRC shows pyrite can persist up to ~550 °C as inclusions in andalusite and staurolite porphyroblasts, as well as possibly in the rock matrix. S contents in carbonaceous pelites show a marked reduction at medium grade, associated with a dearth of visible sulfide in LRC phyllites. Sluggish pyrite desulfidation, pyrrhotite desulfidation, and terrane-scale S mobility are interpreted as the driver for mobility of intra-terrane sourced Au, leading to the formation of a hypozonal orogenic Au deposit in the central LRC. / Graduate / 2022-06-11
|
2 |
PÉTROLOGIE ET GÉOCHRONOLOGIE DES GRANULITES DE ULTRA-HAUTES TEMPÉRATURES DE L'UNITÉ BASIQUE D'ANDRIAMENA (CENTRE-NORD MADAGASCAR). Apport de la géochronologie in-situ U-Th-Pb à l'interprétation des trajets P-T.Goncalves, Philippe 18 October 2002 (has links) (PDF)
La compréhension des processus orogéniques nécessite l'acquisition de données permettant de suivre les variations de pression (P), température (T) et déformation (D) au cours du temps (t). La construction de trajets P-T-D-t implique nécessairement une approche pluridisciplinaire, qui combine une analyse pétrologique et structurale à l'acquisition de données géochronologiques. Dans ce mémoire, une telle approche est appliquée à des granulites polymétamorphiques de Ultra-Hautes Températures de l'unité basique d'Andriamena (Centre-Nord Madagascar). Une attention particulière a été portée sur la corrélation entre les données pétrologiques et géochronologiques afin de discuter la signification des trajets P-T et des âges obtenus en contexte polymétamorphique. L'évolution thermomécanique de l'unité d'Andriamena est marquée par la superposition d'au moins quatre événements thermiques distincts: ~2.7 Ga, 2.52-2.54 Ga, 790-730 Ma et 530-500 Ma. Si la signification de l'événement Archéen à 2.7 Ga reste encore problématique, l'événement fini-Archéen à 2.5 Ga correspond sans ambiguïté au métamorphisme de UHT (~1050°C, 11.5 kbar). Le Néoprotérozoïque moyen (790-730 Ma) est marqué par la mise en place d'un important complexe basique-ultrabasique contemporain d'un épisode de fusion partielle et d'un métamorphisme granulitique (~850-900°C, 7 kbar). Cet événement thermique majeur, à l'échelle du Centre-Nord Madagascar, est interprété comme le témoin d'un contexte tectonique du type arc continental lié à la fermeture de l'océan Mozambique lors de la fragmentation du supercontinent Rodinia. Le dernier événement affectant l'unité d'Andriamena (530-500 Ma) est à l'origine du champ de déformation finie, qui résulte de la superposition de deux phases D1 et D2 synchrones d'un métamorphisme amphibolitique à granulitique de basse pression (650-700°C, 5-6 kbar). La déformation Cambrienne observée dans le Centre-Nord Madagascar est compatible avec un raccourcissement horizontal Est-Ouest qui résulterait de la convergence de cratons lors de la consolidation finale du Gondwana. Par leur caractère réfractaire, les Mg-granulites de UHT préservent de nombreuses textures minéralogiques permettant de retracer un trajet PT pétrographique complexe et apparemment continu. Néanmoins, les données géochronologiques obtenues par la méthode de datation in-situ sur monazite à la microsonde électronique montrent que le trajet pétrographique ne doit pas être considéré comme issu d'un seul et même événement thermique, mais plutôt comme un trajet discontinu résultant de la superposition de deux événements distincts à 2.5 Ga et 790-730 Ma. D'autre part, nous montrons qu'une partie du trajet pétrographique (décompression isotherme) correspond à un trajet apparent sans signification tectonique. Nous suggérons que cette décompression apparente résulte de l'équilibration des paragenèses réfractaires de UHT (2.5 Ga) à plus basses pressions, lors de l'événement Néoprotérozoïque moyen (790-730 Ma), sans que les conditions P-T des réactions minéralogiques observées n'aient été atteintes. La distinction qui existe entre trajet pétrographique et trajet P-T réel montre l'importance de déterminer l'âge absolu des différents assemblages et réactions métamorphiques, afin de dater différentes portions du trajet P-T. Cet objectif est atteint grâce aux méthodes de datations ponctuelles et in-situ qui permettent de dater des minéraux dans leur contexte textural et donc de corréler âge et assemblage métamorphique. Ainsi, nous avons développé une nouvelle méthode de datation in-situ U-Th-Pb sur monazite, qui utilise les méthodes chimiques (microsonde) et isotopiques conventionnelles (ID-TIMS). Par ces deux méthodes, on combine une haute résolution spatiale (~3µm - microsonde) à une haute précision analytique (ID-TIMS). La particularité de cette nouvelle approche est que la datation isotopique est réalisée sur des grains individuels extraits par micro-forage directement sur lame mince et qui ont été au préalable caractérisés à la microsonde électronique (imagerie, datation chimique...). La position texturale de chaque grain daté est ainsi retenue.
|
Page generated in 0.0318 seconds