• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Fabrication and Testing of a Wearable Cooling System

Ernst, Timothy Craig 14 February 2005 (has links)
A wearable cooling system was developed in this study for use in elevated temperature environments by military, fire-fighting, chemical-response, and other hazardous duty personnel. Such a system is expected to reduce heat-related stresses, increasing productivity and allowable mission duration, reduce fatigue, and lead to a safer working environment. The cooling system consists of an engine-driven vapor-compression system assembled in a backpack configuration, coupled with a cooling garment containing refrigerant lines worn in close proximity to the skin. A 2.0 L fuel tank in the backpack powers a small-scale engine that runs a compressor modified from the original air compression application to the refrigerant compression application here. A centrifugal clutch and reduction gear train system was designed and fabricated to couple the engine output to the refrigerant compressor and heat rejection fan. The overall cooling system, including the wearable evaporator, had a total mass of 5.31 kg (11.7 lb) and measured 0.318 נ0.273 נ0.152 m (12.5 נ10.75 נ6 inches). Testing was conducted in a controlled environment to determine system performance over a wide range of expected ambient temperatures (37.7-47.5㩬 evaporator refrigerant temperatures (22.2-26.1㩬 and engine speeds (10,500-13,300 RPM). Heat removal rates of up to 300 W, which is the cooling rate established in the literature as being required for maintaining comfort at an activity level comparable to calisthenics or moderate exercise, were demonstrated at a nominal ambient temperature of 43.3㠨110橮 Modeling the fuel as 88 percent methanol (LHV ~ 1.992ױ07 J/kg) and 12 percent oil, the system consumed 1750 W at an average fuel mass flow rate of 0.316 kg/hr to provide a nominal cooling rate of 178 W for 5.7 hrs between refueling.
2

EVALUATION OF PERSONAL COOLING SYSTEMS AND SIMULATION OF THEIR EFFECTS ON HUMAN SUBJECTS USING BASIC AND ADVANCED VIRTUAL ENVIRONMENTS

Elson, John Craig January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Steven J. Eckels / The research presents the investigation of personal cooling systems (PCS) and their effects on humans from a thermodynamic perspective. The original focus of this study was to determine the most appropriate PCS for dismounted U.S. Army soldiers in a desert environment. Soldiers were experiencing heat stress due to a combination of interrelated factors including: environmental variables, activity levels, and clothing/personal protective equipment (PPE), which contributed to the buildup of thermal energy in the body, resulting in heat stress. This is also a common problem in industry, recreation, and sports. A PCS can serve as a technological solution to mitigate the effects of heat stress when other solutions are not possible. Viable PCS were selected from the KSU PCS database, expanded to over 300 PCS in the course of this study. A cooling effectiveness score was developed incorporating the logistical burdens of a PCS. Fourteen different PCS configurations were tested according to ASTM F2370 on a sweating thermal manikin. Four top systems were chosen for ASTM F2300 human subject testing on 22 male and 2 female soldiers in simulated desert conditions: dry air temperature = 42.2 ºC, mean radiant temperature = 54.4 ºC, air velocity = 2.0 m/s, relative humidity = 20%. Subjects wore military body armor, helmets and battle dress uniforms walking on treadmills at a metabolic rate of approximately 375-400W. All the PCS conditions showed significant reductions in core temperature rise, heart rate, and total sweat produced compared to the baseline (p<0.05). The expected mean body temperature was higher in the human subjects than expected based on the cooling obtained from the sweating manikin test. Lowered sweat production was determined to be the likely cause, reducing the body’s natural heat dissipation. The ASHRAE two-node model and TAITherm commercial human thermal models were used to investigate this theory. A method to account for fabric saturation from dripping sweat was developed and is presented as part of a new model. This study highlights that the response of the human body is highly complex in high-activity, high-temperature environments. The modeling efforts show the PCS moved the body from uncompensable to compensable heat stress and the body also reduced sweating rates when the PCS was used. Most models assume constant sweating (or natural heat loss) thus the PCS sweat reduction is the likely cause of the higher than expected core temperatures, and is an important aspect when determining the purpose of a PCS.
3

Evaluation of personal cooling systems and simulation of their effects on human subjects using basic and advanced virtual environments

Elson, John Craig January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Steven J. Eckels / The research presents the investigation of personal cooling systems (PCS) and their effects on humans from a thermodynamic perspective. The original focus of this study was to determine the most appropriate PCS for dismounted U.S. Army soldiers in a desert environment. Soldiers were experiencing heat stress due to a combination of interrelated factors including: environmental variables, activity levels, and clothing/personal protective equipment (PPE), which contributed to the buildup of thermal energy in the body, resulting in heat stress. This is also a common problem in industry, recreation, and sports. A PCS can serve as a technological solution to mitigate the effects of heat stress when other solutions are not possible. Viable PCS were selected from the KSU PCS database, expanded to over 300 PCS in the course of this study. A cooling effectiveness score was developed incorporating the logistical burdens of a PCS. Fourteen different PCS configurations were tested according to ASTM F2370 on a sweating thermal manikin. Four top systems were chosen for ASTM F2300 human subject testing on 22 male and 2 female soldiers in simulated desert conditions: dry air temperature = 42.2 ºC, mean radiant temperature = 54.4 ºC, air velocity = 2.0 m/s, relative humidity = 20%. Subjects wore military body armor, helmets and battle dress uniforms walking on treadmills at a metabolic rate of approximately 375-400W. All the PCS conditions showed significant reductions in core temperature rise, heart rate, and total sweat produced compared to the baseline (p<0.05). The expected mean body temperature was higher in the human subjects than expected based on the cooling obtained from the sweating manikin test. Lowered sweat production was determined to be the likely cause, reducing the body’s natural heat dissipation. The ASHRAE two-node model and TAITherm commercial human thermal models were used to investigate this theory. A method to account for fabric saturation from dripping sweat was developed and is presented as part of a new model. This study highlights that the response of the human body is highly complex in high-activity, high-temperature environments. The modeling efforts show the PCS moved the body from uncompensable to compensable heat stress and the body also reduced sweating rates when the PCS was used. Most models assume constant sweating (or natural heat loss) thus the PCS sweat reduction is the likely cause of the higher than expected core temperatures, and is an important aspect when determining the purpose of a PCS.
4

Improved Thermoregulation Of Brain Temperature Using Phase Change Material-Mediated Head Cooling System

Rakkimuthu, Sathyaprabha January 2020 (has links)
No description available.

Page generated in 0.1216 seconds