Spelling suggestions: "subject:"personalized search"" "subject:"ersonalized search""
1 |
Towards Context-Aware Personalized Recommendations in an Ambient Intelligence EnvironmentAlhamid, Mohammed F. January 2015 (has links)
Due to the rapid increase of social network resources and services, Internet users are now overwhelmed by the vast quantity of social media available. By utilizing the user’s context while consuming diverse multimedia contents, we can identify different personal preferences and settings. However, there is still a need to reinforce the recommendation process in a systematic way, with context-adaptive information. This thesis proposes a recommendation model, called HPEM, that establishes a bridge between the multimedia resources, user collaborative preferences, and the detected contextual information, including physiological parameters. The collection of contextual information and the delivery of the resulted recommendation is made possible by adapting the user’s environment using Ambient Intelligent (AmI) interfaces. Additionally, this thesis presents the potential of including a user’s biological signal and leveraging it within an adapted collaborative filtering algorithm in the recommendation process. First, the different versions of the proposed HPEM model utilize existing online social networks by incorporating social tags and rating information in ways that personalize the search for content in a particular detected context. By leveraging the social tagging, our proposed model computes the hidden preferences of users in certain contexts from other similar contexts, as well as the hidden assignment of contexts for items from other similar items. Second, we demonstrate the use of an optimization function to maximize the Mean Average
Prevision (MAP) measure of the resulted recommendations.
We demonstrate the feasibility of HPEM with two prototype applications that use
contextual information for recommendations. Offline and online experiments have been conducted to measure the accuracy of delivering personalized recommendations, based on the user’s context; two real-world and one collected semi-synthetic datasets were used. Our evaluation results show a potential improvement to the quality of the recommendation when compared to state-of-the-art recommendation algorithms that consider contextual information. We also compare the proposed method to other algorithms, where user’s context is not used to personalize the recommendation results. Additionally, the results obtained demonstrate certain improvements on cold start situations, where relatively little information is known about a user or an item.
|
2 |
個人化部落格搜尋 / Personalized search from blog data黃翊書 Unknown Date (has links)
隨著部落格的文章越來多,如何在大量的部落格文章中有效的幫助使用者找到需要的文章就變成一個非常重要的問題。因此,本研究結合部落格搜尋和個人化搜尋的技術,提出針對搜尋部落格文章的個人化部落格搜尋。其中,主要包含了兩種個人化部落格搜尋的方法。首先,延伸一般個人化搜尋的方式針對部落格的環境加以修正,提出了內文個人化部落格搜尋。透過分析和搜尋系統使用者相關的部落格文章內文,讓使用者可以更快的在部落格中找到需要的文章。接著,我們提出創新的社交個人化部落格搜尋,藉由分析使用者和其他部落客之間的社交行為,來達到個人化的目的。最後,在實驗中可以發現,個人化部落格搜尋明顯的提升了部落格搜尋的準確度和滿意度。 / As the quantity of articles increased rapidly, how to help the users to find the blog articles effectively becomes an important issue. Therefore, this study combines the traditional blog search and personalized search techniques, and proposes a way to search blog by personal information. This study mainly contains two methods of personalized blog search. First, the general way of personalized search environment for blogs to be amended, the content based personalized blog search. By analyzing and searching the system-related blog article text of the users, this study can make users quickly figure out the articles they need. We propose a social based personalized blog search, by analyzing the social behavior between users and other bloggers, to achieve personal goals. Finally, the result of the experiments has shown that both ways obviously improved search accuracy and satisfaction.
|
3 |
Understanding human dynamics from large-scale location-centric social media data : analysis and applications / Exploration de la dynamique humaine basée sur des données massives de réseaux sociaux de géolocalisation : analyse et applicationsYang, Dingqi 27 January 2015 (has links)
La dynamique humaine est un sujet essentiel de l'informatique centrée sur l’homme. Elle se concentre sur la compréhension des régularités sous-jacentes, des relations, et des changements dans les comportements humains. En analysant la dynamique humaine, nous pouvons comprendre non seulement des comportements individuels, tels que la présence d’une personne à un endroit précis, mais aussi des comportements collectifs, comme les mouvements sociaux. L’exploration de la dynamique humaine permet ainsi diverses applications, entre autres celles des services géo-dépendants personnalisés dans des scénarios de ville intelligente. Avec l'omniprésence des smartphones équipés de GPS, les réseaux sociaux de géolocalisation ont acquis une popularité croissante au cours des dernières années, ce qui rend les données de comportements des utilisateurs disponibles à grande échelle. Sur les dits réseaux sociaux de géolocalisation, les utilisateurs peuvent partager leurs activités en temps réel avec par l'enregistrement de leur présence à des points d'intérêt (POIs), tels qu’un restaurant. Ces données d'activité contiennent des informations massives sur la dynamique humaine. Dans cette thèse, nous explorons la dynamique humaine basée sur les données massives des réseaux sociaux de géolocalisation. Concrètement, du point de vue individuel, nous étudions la préférence de l'utilisateur quant aux POIs avec des granularités différentes et ses applications, ainsi que la régularité spatio-temporelle des activités des utilisateurs. Du point de vue collectif, nous explorons la forme d'activité collective avec les granularités de pays et ville, ainsi qu’en corrélation avec les cultures globales / Human dynamics is an essential aspect of human centric computing. As a transdisciplinary research field, it focuses on understanding the underlying patterns, relationships, and changes of human behavior. By exploring human dynamics, we can understand not only individual’s behavior, such as a presence at a specific place, but also collective behaviors, such as social movement. Understanding human dynamics can thus enable various applications, such as personalized location based services. However, before the availability of ubiquitous smart devices (e.g., smartphones), it is practically hard to collect large-scale human behavior data. With the ubiquity of GPS-equipped smart phones, location based social media has gained increasing popularity in recent years, making large-scale user activity data become attainable. Via location based social media, users can share their activities as real-time presences at Points of Interests (POIs), such as a restaurant or a bar, within their social circles. Such data brings an unprecedented opportunity to study human dynamics. In this dissertation, based on large-scale location centric social media data, we study human dynamics from both individual and collective perspectives. From individual perspective, we study user preference on POIs with different granularities and its applications in personalized location based services, as well as the spatial-temporal regularity of user activities. From collective perspective, we explore the global scale collective activity patterns with both country and city granularities, and also identify their correlations with diverse human cultures
|
Page generated in 0.0716 seconds