Spelling suggestions: "subject:"persson model"" "subject:"persson godel""
1 |
Tire-Road Friction Coefficient Estimation Using a Multi-scale, Physics-based ModelPeterson, Eric W. 17 December 2014 (has links)
The interaction between a tire and road surface is of critical importance as the motion of a car in both transient and steady-state maneuvers is predicated on the friction forces generated at the tire-road interface. A general method for predicting friction coefficients for an arbitrary asphalt pavement surface would be an invaluable engineering tool for designing many vehicle safety and performance features, tire design, and improving asphalt-aggregate mixtures used for pavement surfaces by manipulating texture. General, physics-based methods for predicting friction are incredibly difficult, if not impossible to realize—However, for the specific case of rubber sliding across a rough surface, the primary physical mechanisms responsible for friction, notably rubber hysteresis, can be modeled.
The objective of the subsequent research is to investigate one such physics model, referred to as Persson Theory, and implement the constitutive equations into a MatLab® code to be solved numerically. The model uses high-resolution surface measurements, along with some of the physical properties of rubber as inputs and outputs the kinetic friction coefficient. The Persson model was successfully implemented into MatLab® and high resolution measurements (from optical microscopy and imaging software) were obtained for a variety of surfaces. Friction coefficients were calculated for each surface and compared with measured friction values obtained from British Pendulum testing. The accuracy and feasibility of the Persson model are discussed and results are compared with a simpler, semi-empirical indenter model. A brief discussion of the merits and drawbacks of the Persson model are offered along with recommendations for future research based on the information acquired from the present study. / Master of Science
|
Page generated in 0.0329 seconds