• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adsorption Isotherm Parameter Estimation in Nonlinear Liquid Chromatography

Forssén, Patrik January 2005 (has links)
This thesis concerns the development and validation of methods for the industrially important area of adsorption isotherm parameter estimation in preparative, nonlinear high performance liquid chromatography (HPLC). Preparative chromatography is a powerful separation method to get pure compounds from more or less complex liquid mixtures, e.g., mixtures of mirror-image molecules. Computer simulations can be used to optimize preparative chromatography, but then competitive adsorption isotherm parameters are usually required. Here two methods to estimate adsorption isotherm parameters are treated: (i) the perturbation peak (PP) method and (ii) the inverse method (IM). A new theory for the PP method was derived and led to a new injection technique which was validated experimentally. This injection technique solved the severe problem with vanishing peaks and enabled us to use the PP method to estimate binary competitive adsorption isotherms valid over a broad concentration range. Also, the injection technique made it possible to estimate competitive adsorption isotherms for a quaternary mixture for the first time. Finally, an interesting perturbation peak phenomenon, known as the “Helfferich Paradox”, was experimentally verified for the first time. The IM is a relatively new method to determine adsorption isotherm parameters. It has the advantage of requiring very small samples, but also requires an advanced computer algorithm. An improved implementation of this computer algorithm was developed and tested experimentally. Also, a variant of the IM called “the inverse method on plateaus” was tested experimentally and the estimated adsorption isotherm parameters were shown to be valid over a broader concentration range than those estimated with the standard IM.
2

Development and Validation of HPLC Methods for Analytical and Preparative Purposes

Lindholm, Johan January 2004 (has links)
<p>This thesis concerns the development and validation of high performance liquid chromatography (HPLC) methods aimed for two industrially important areas: (i) analysis of biotechnological synthesis and (ii) determination of adsorption isotherm parameters. There is today a lack of detailed recommendations for analytical procedures in the field of biotechnological production of drugs. Therefore, guidelines were given for analytical development and validation in this field; the production of 9α-hydroxyprogesterone was used as model. In addition, a rapid method using HPLC coupled with diode-array-detection (DAD) and mass spectrometry (MS), was developed for the preliminary identification and quantification of the product. In addition, requirements and recommendations were developed for the selection of the internal standard and for its inclusion in the process liquid. By using this approach the precision and accuracy of the quantitative method were considerably improved. </p><p>Preparative chromatography is a powerful separation method for the purification of pure compounds from more or less complex sample mixtures. One such mixture can be the process liquid from a fermentation, another example can be a racemic mixture of compounds whose enantiomeric constituents must be isolated. Computer-assisted modeling can be used to optimize preparative chromatography. However, competitive adsorption isotherm parameters are required as input data for the computer simulations. In this thesis, a new injection technique, based on a firm theoretical basis, was developed for the peak perturbation (PP) method allowing the determination of binary competitive adsorption isotherm parameters from a broad concentration range. With the new method the determination of adsorption isotherm parameters from a quaternary mixture could be done for the first time. The profiles simulated with these parameters showed excellent agreement with the corresponding experimental profiles, validating the accuracy of the adsorption isotherm parameters derived by the new method.</p>
3

Development and Validation of HPLC Methods for Analytical and Preparative Purposes

Lindholm, Johan January 2004 (has links)
This thesis concerns the development and validation of high performance liquid chromatography (HPLC) methods aimed for two industrially important areas: (i) analysis of biotechnological synthesis and (ii) determination of adsorption isotherm parameters. There is today a lack of detailed recommendations for analytical procedures in the field of biotechnological production of drugs. Therefore, guidelines were given for analytical development and validation in this field; the production of 9α-hydroxyprogesterone was used as model. In addition, a rapid method using HPLC coupled with diode-array-detection (DAD) and mass spectrometry (MS), was developed for the preliminary identification and quantification of the product. In addition, requirements and recommendations were developed for the selection of the internal standard and for its inclusion in the process liquid. By using this approach the precision and accuracy of the quantitative method were considerably improved. Preparative chromatography is a powerful separation method for the purification of pure compounds from more or less complex sample mixtures. One such mixture can be the process liquid from a fermentation, another example can be a racemic mixture of compounds whose enantiomeric constituents must be isolated. Computer-assisted modeling can be used to optimize preparative chromatography. However, competitive adsorption isotherm parameters are required as input data for the computer simulations. In this thesis, a new injection technique, based on a firm theoretical basis, was developed for the peak perturbation (PP) method allowing the determination of binary competitive adsorption isotherm parameters from a broad concentration range. With the new method the determination of adsorption isotherm parameters from a quaternary mixture could be done for the first time. The profiles simulated with these parameters showed excellent agreement with the corresponding experimental profiles, validating the accuracy of the adsorption isotherm parameters derived by the new method.

Page generated in 0.1021 seconds