• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Εύρωστοι γεωμετρικοί αλγόριθμοι / Robust algorithms in computational geometry

Ζαχάρου, Θεοδοσία 18 February 2010 (has links)
Η Υπολογιστική Γεωμετρία έχει υιοθετήσει το μοντέλο της ακριβής αριθμητικής σε πραγματικούς αριθμούς. Αυτή η προσέγγιση όμως έχει μειονεκτήματα κατά την επίλυση των αλγορίθμων στις υπολογιστικές μηχανές μιας και αυτές λειτουργούν με πεπερασμένη ακρίβεια, κάτι που επηρεάζει όχι μόνο τα αποτελέσματα των αλγορίθμων αλλά την ορθότητα του προβλήματος, εξαιτίας των στρογγυλοποιήσεων που πραγματοποιούνται κατά τη διάρκεια εκτέλεσης του αλγορίθμου. Το πρόβλημα της επίλυσης γεωμετρικών αλγορίθμων με μοντέλο real-RAM αποτυγχάνει επειδή δεν μπορούν να γίνουν με ακρίβεια ή έστω μέσα σε συγκεκριμένο σφάλμα όλοι οι υπολογισμοί. Προσπαθώντας να επιλυθεί το πρόβλημα αυτό έχει εισαχθεί η έννοια των εύρωστων γεωμετρικών αλγόριθμων, δηλαδή αλγορίθμων οι οποίοι δίνουν αποδεκτά αποτελέσματα για όλες τις νόμιμες εισόδους του προβλήματος. Προκειμένου να επιλυθεί το πρόβλημα που ανακύπτει κατά την μεταφορά του αλγορίθμου σε μια υπολογιστική μηχανή, έχουν προταθεί δύο διαφορετικές προσεγγίσεις η καθεμία από τις οποίες ακολουθεί διαφορετική μεθοδολογία. Η μία ομάδα τεχνικών ονομάζεται perturbing και περιλαμβάνει μεθόδους οι οποίες μετατρέπουν το πρόβλημα έτσι ώστε να αποφευχθούν οι ασάφειες και τα λάθη. Η άλλη ομάδα ονομάζεται non perturbing και περιλαμβάνει μεθόδους που αντιμετωπίζουν το πρόβλημα με ακριβή αριθμητική. / The problem of resolution of geometric algorithms with a real - RAM model fails because it cannot have precision or a concrete fault for all the calculations. There exist two different approaches that give solution in this problem each one following a different methodology. A team of techniques is named perturbing and it includes methods what they change the problem so as the ambiguities and the errors are avoided. The other team is named non perturbing and it includes methods that face the problem with precise arithmetic.

Page generated in 0.0713 seconds