• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 103
  • 54
  • 32
  • 32
  • 32
  • 32
  • 32
  • 32
  • 20
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 438
  • 438
  • 416
  • 198
  • 196
  • 143
  • 116
  • 104
  • 98
  • 97
  • 86
  • 68
  • 54
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Variation for resistance to Fusarium graminearum ear rot in selfed families from the corn population Zapalote Chico

Krsikapa, Nenad. January 1997 (has links)
Experiments were conducted to assess the variation for resistance to Fusarium graminearum ear rot among selfed lines from the Zapalote Chico corn population. It was already known that Zapalote Chico possesses some resistance to corn earworm (Heliothis zeae) and variation in Fusarium graminearum ear rot symptom severity had been observed within the population. During two years of experiments, 47 S4- and S5-generation lines were inoculated and ear rot severity was assessed. In addition, eight pigmentation traits and eight morphological traits were recorded. Lines showed significant differences for all recorded traits. Associations were not strong among morphological traits, but were fairly strong among pigmentation traits. Ear rot symptom severity did not seem to be associated with any other trait. The source population and inbred lines exhibited broad ranges of variation and similar bimodal distributions of ear rot symptom severity ratings. Despite significant differences among lines within experiments none of the lines showed distinct and consistent resistance over two years of experiments. It seems that Zapalote Chico lines do not have environmental stability and sufficient potential to be considered worthwhile source of resistance for ear rot.
132

Differentially expressed genes of Sophrolaeliacattleya Ginny Champion "Riverbend" in response to the odontoglossum ringspot virus

Schuck, Heather A. January 2000 (has links)
Due to the rapid destruction of native orchid habitats it has become necessary to house many endangered orchid species in greenhouse environments where enhanced spread of viral disease occurs due to the close contact between plants. This research was concerned with the construction of a library of genes whose expression is induced in response to viral challenge. In uncovering the genes that are activated during plant-pathogen interactions, it may be possible to manipulate these pathways to develop virus resistant orchids. Furthermore, this research will contribute additional information for the existing framework of plant-pathogen interactions of all plant species.In order to construct a library of genes expressed in response to viral infection, suppression subtractive hybridization was performed using the PCR-Select cDNA Subtraction Kit (CLONTECH, Palo Alto, CA) on Sophrolaeliacattleya Ginny Champion 'Riverbend' clones. RNA was isolated from plants that had been inoculated with the Odontoglossum ringspot virus (ORSV) and from control plants that had not been inoculated with ORSV. Following reverse transcription-PCR (RT-PCR) to obtain cDNA, cDNAs of the tester population (those cDNAs containing differentially expressed messages in response to ORSV) and the driver population (reference cDNAs from uninfected plants) were obtained. The two different cDNA populations are mixed together and hybridized. The sequences common to both populations were subtracted, leaving only the differentially expressed sequences available for PCR amplification.A library containing these genes was constructed, and one clone, chosen at random, was sequenced. Based on homology comparisons to known genes, we have cloned a gene that may contain a nucleotide binding site similar to that of the tobacco N gene, important for plant resistance to pathogens. In the near future, this clone will be used to construct probes for use in northern analysis to determine the timing and localization of the products of this gene. This information will aid in characterizing the function of the orchid N-gene and identifying other members of this signal cascade. In addition, many other clones await sequencing and similar characterization. / Department of Biology
133

Metabolic profiling of potato cultivars varying in horizontal resistance to late blight, Phytophthora infestans

Abu-Nada, Yousef. January 2006 (has links)
Potato is one of the most important crops grown in Canada and all over the world. Late blight caused by P. infestans is one of the major diseases of potato and is mainly managed by fungicides application. The extensive use of fungicides not only causes adverse effects on the environment but also accelerates the development of resistance in this pathogen. Horizontal resistance is considered as the best choice to control P. infestans as it is durable over years. Breeding for durable resistance requires evaluation of hundreds of breeding lines in greenhouses and in the field. This is usually done by testing several epidemiological parameters such as infection efficiency, lesion size, latent period, and area under disease progress curve (AUDPC). These methods are time-consuming and expensive. The present study reports standardization of metabolic profiling protocols and exploration of metabolic profiling based on GC/MS as an additional tool to discriminate resistance in potato against late blight. Potato cultivars varying in horizontal resistance against late blight have been inoculated with water or the pathogen and more than 100 metabolites have been tentatively identified by GC/MS. Univariate analysis has been used to identify several pathogenesis related (PR) and defense related (DR) metabolites that have potential for application as resistance biomarker metabolites. Multivariate analysis of the abundances of metabolites (the mass spectral (MS) ion trap detector outputs were obtained using Saturn Lab Software Version 5.52 and these abundances are positively proportional to the concentration of mass ions of metabolites) in cultivars were mainly used to identify pathogenesis and resistance functions. Following pathogen inoculation, several metabolites such as amino acids, organic acids, fatty acids and sugars, were significantly increased in abundances, especially in the resistant cultivar. Other metabolites such as phenylalanine, tyrosine, shikimic acid and malonic acid detected here are well known for their direct participation in the shikimic acid, the phenylpropanoid, and the malonic acid metabolic pathways. These pathways lead to the production of several defense metabolites including antimicrobial compounds including phenolics, flavonoids and phytoalexins. The metabolic profiling technology developed here has the potential application for screening of potato breeding lines for horizontal resistance against late blight.
134

Pubescence in red clover : its inheritance and its relationship to potato leafhopper resistance

Kusmiyati, Florentina January 1995 (has links)
Potato leafhopper causes considerable damage in red clover. The main objectives of this study were to clarify the inheritance of pubescence and to evaluate the relationship between pubescence and potato leafhopper (Empoasca fabae (Harris) resistance. Thirteen red clover clones of diverse origin, including both pubescent and non-pubescent types were used as parents. A series of crosses were made in all possible combinations among the 13 parental clones. Seedlings of F$ sb1$ progeny and stem cuttings from parents were planted in the field in the summer of 1993 in a randomized complete block design. Based on the results, the inheritance of pubescence type on red clover stems, petioles and abaxial leaf surfaces was best explained individually by two-locus models showing dominant and recessive interaction. A two locus model with recessive epistasis was proposed for pubescence on stipules and basal internodes, but there were a number of crosses that deviated from expected ratios. There was quantitative variation for trichome density on red clover and it appeared to be inherited as a quantitative trait. Based on mid-parent offspring regression, the heritability estimates of trichome density on petioles, stems, abaxial leaf surfaces, and adaxial leaf surfaces were 0.16, 0.77, 0.50 and 0.48, respectively. Pubescence was apparently associated with potato leafhopper resistance. Visual ratings of feeding injury, the numbers of leafhopper nymphs per plant and the numbers of nymphs per gram of dry plant material were higher on glabrous plants than on pubescent plants. (Abstract shortened by UMI.)
135

Characterization of resistance to lettuce mosaic virus in Lactuca sativa

Ubalijoro, Eliane January 1994 (has links)
Lettuce mosaic virus (LMV) is an economically important pathogen with worldwide distribution. LMV infection in L. sativa can cause significant yield losses. Resistance to LMV in L. sativa is conferred by the recessive gene mo. We attempted to position the mo gene on the L. sativa map. The ultimate goal is a better understanding of plant-virus interactions. To do so, Random Amplified Polymorphic DNA (RAPD) markers were screened in the near isogenic lines (NILs) Vanguard and Vanguard 75. These NILs differ in the presence of the mo gene in Vanguard 75. Polymorphic markers were screened for linkage to mo in two F$ sb2$ populations segregating for resistance to LMV. The F$ sb2$ populations used were derived from 2 crosses, the first one between the L. sativa cultivars Dwarf 2 (resistant to LMV via the presence of mo) and Saffier and the second one between two breeding lines 87-25M-1 (momo) and 87-1090M-1 (MoMo). In order to develop a highly stringent antibody detection system to phenotype plants infected with LMV, a plasmid construct was developed which overproduces LMV coat protein. This construct will be used in the future to produce enough recombinant LMV coat protein for antibody production. To further characterize mo, a selection of cultivars resistant and susceptible to LMV according to the literature were subjected to various temperature changes to determine the environmental influences on virus movement.
136

Mapping of molecular markers surrounding the Tu gene conferring resistance to turnip mosaic virus in Lactuca sativa L.

Montesclaros, Luz B. January 1996 (has links)
In lettuce (Lactuca sativa), the dominant gene Tu confers resistance to turnip mosaic virus (TuMV) infection. In order to eventually clone and characterize the Tu gene using a map-based cloning strategy, the chromosome region in which Tu is located needs to be saturated with molecular markers. Random polymorphic DNA (RAPD) markers were screened using bulked segregant analysis. Nine new RAPD markers, UBC431$ rm sb{420}, UBC431 sb{940}, UBC434 sb{360}, UBC434 sb{1000}, UBC439 sb{520}, UBC448 sb{685:750}, UBC135 sb{240}, OP108 sb{410} and OP108 sb{1305},$ were identified as linked to Tu. Each marker was mapped relative to Tu using F$ sb2$ individuals previously known to be recombinant in the area surrounding the Tu locus. Three new markers, UBC431$ rm sb{420}, UBC439 sb{520} and UBC135 sb{240}$ are within a 5 cM area of Tu. As the number of DNA markers on the map increased map expansion and difficulties in determining a unique order were encountered. To increase the confidence in the estimate of genetic distances, a population of 500 F$ sb2$ plants was screened in order to identify more recombinant individuals around the Tu locus. The population was screened using markers UBC431$ sb{420}$ and UBC135$ sb{240}.$ Thirty-three recombinants were identified in an interval of 6.6 cM. Two markers, UBC346$ sb{1067}$ and OP108$ sb{634},$ tightly flanking Tu were converted to sequence characterized amplified regions (SCAR 346 and SCAR L08). No polymorphism was detected among the SCARs generated. The area surrounding Tu now includes 24 RAPD markers in an interval of 44 cM.
137

Quantitative genetic analysis of recombinant inbred lines (RIL) from tropical maize singlecrosses

Moon, Hyeon Gui January 1995 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 228-240). / Microfiche. / xx, 240 leaves, bound ill. (some col.) 29 cm
138

Construction of a genetic linkage map of papaya and mapping traits of horticultural importance

Sondur, Suresh N January 1994 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1994. / Includes bibliographical references (leaves [179]-196). / Microfiche. / xv, 196 leaves, bound ill. 29 cm
139

Analysis of genetic resistance to barley stripe rust (Puccinia striiformis f. sp. hordei)

Prehn, Doris A. 20 December 1993 (has links)
Stripe rust (Puccinia striiformis f. sp. hordei) is a serious disease of barley that can cause up to 70% yield loss in susceptible varieties. The fungus is moving northward, threatening major barley production areas in the US, where most cultivars are susceptible. Fungicides are available for control of stripe rust, but economic and environmental considerations favor genetic resistance. Two stripe rust resistance quantitative trait loci (QTLs) located in chromosomes 4 and 7 have previously been reported. One hundred and ten doubled haploid progeny from a stripe rust susceptible x resistant cross were derived using the Hordeum bulbosum technique and phenotyped for agronomic and malting quality traits in order to assess the importance of linkage drag associated with the mapped stripe rust resistance QTLs. Data on 33 markers were combined with phenotypic data for QTL analysis. A molecular marker-assisted backcross program was implemented to initiate the transfer of the stripe rust resistance loci into susceptible US germplasm. No negative QTLs for agronomic or malting quality traits were detected within or adjacent to the intervals that were targeted for marker-assisted selection. A minor leaf rust resistance QTL, however, was found adjacent to the stripe rust locus on chromosome 7. Linkage drag in this region could operate in favor of the breeder. Epistatic interaction between the two stripe rust resistance QTLs confirms the necessity of introgressing both chromosome intervals. / Graduation date: 1994
140

Inheritance of resistance to Septoria leaf blotch in selected spring bread wheat genotypes (Triticum aestivum L.)

Briceno Felix, Guillermo Ariel 03 August 1992 (has links)
Septoria leaf blotch of wheat is a major biotic factor limiting the grain yield. To determine the nature of inheritance involving selected genotypes, three resistant semidwarf spring wheat lines exhibiting durable global resistance and one susceptible cultivar were crossed in all possible combinations, excluding reciprocals. Parents, Fl, F2, and F3 generations were inoculated with one pathogenic strain of Septoria tritici and evaluated under field conditions. Data were collected on an individual plant basis. F2 and F3 frequency distributions were computed to determine the nature of inheritance. Combining ability analysis of the 4x4 diallel cross and narrow-sense heritability were employed to estimate the nature of gene action. Phenotypic correlations were obtained to examined the possible association between disease severity traits and their relationship with heading date and plant height. The continuous distribution of the F2 and F3 populations among crosses made it impossible to classify plants into discrete classes in crosses between resistant x susceptible genotypes. Mean values of the disease traits Septoria progress coefficient, Relative coefficient of infection, and Septoria severity of flag leaf among the segregating populations were similar to the midparent values. Transgressive segregation was also observed in the F2 and F3 suggesting that parents had different resistance genes. Additive gene effects were found to be the major component of variation although nonadditive gene action played an important role in the expression of all three disease traits. The resistant parents Bobwhite"S" and Kavkaz /K4500 L.A.4 were found to have the largest negative general combining ability effects for the disease traits suggesting that these parents would be the best source for resistance to Septoria leaf blotch. High general combining ability and high narrow sense heritability estimates in the F3 population, indicated that substantial progress for resistance to Septoria tritici would be effective selecting in this generation. Of the three disease measures it would appear that selection for the lowest percentage of Septoria infection on the flag leaf would provide the most progress in developing resistant cultivars. Moderate and low negative phenotypic correlations were found among generations for the disease traits with heading date and plant height. From the results of this study the selection of early maturing short stature progeny would be possible within the genetic materials employed in this study. / Graduation date: 1993

Page generated in 0.0586 seconds