Spelling suggestions: "subject:"test resistance"" "subject:"est resistance""
381 |
Breeding investigations on utility of maize streak virus resistant germplasm for hybrid development in the tropics.Gichuru, Lilian Njeri. 12 May 2014 (has links)
Maize (Zea mays L.) supports millions of livelihoods in sub-Saharan Africa (SSA) in terms of
food and feed. Production of the crop is however limited by several factors, among these, maize
streak virus (MSV) disease. Although extensively studied, MSV remains a serious problem in
SSA due to several challenges in breeding MSV resistant maize varieties. These include
integration of MSV resistant germplasm from different backgrounds, reliance on a few resistant
sources, and genotype x environment interactions. This study was designed to assess the
breeding potential of several MSV resistant lines in hybrid combinations. Understanding
architecture of genetic divergence and background of these genotypes would greatly aid in
breeding high yielding and stable MSV resistant hybrids. Experiments were conducted during
2010 to 2012 seasons in Kenya. Diallel crosses and SSR markers were used to characterize
MSV resistant maize inbred lines from three programs of CIMMYT, KARI and IITA.
In general, this study revealed that MSV is still an important problem in Kenya with high
incidence and severity levels in the farmers’ fields. The levels of MSV resistance in locally
grown hybrids needs to be improved. Farmers challenged breeders to develop new hybrids that
combine early maturing, high yield potential and MSV resistance.
The study was successful in identifying the best eight inbred lines for use in breeding new maize
hybrids with MSV resistance. The nature of gene effects was established for the first time, in
particular the role of epistasis and G x E in conditioning MSV resistance in hybrids. Results
indicate serious implications for previous models that ignored epistasis in studying MSV
resistance in maize. The inbreds Z419, S558, CML509 and Osu23i, displayed high levels of
epistasis for MSV resistance. Unless strong sources of MSV resistance, such as MUL114 and
CML509, are used, breeding resistant hybrids will require parents that carry dominant
resistance genes. The additive-dominance model was adequate to explain northern leaf blight
(NLB) resistance in hybrids, indicating fewer complications in breeding NLB resistant hybrids.
The study also reveals that SSR genetic distance data can be used to predict hybrid
performance, especially when the correct set of markers is used. Many previous studies have
not found any significant relationship between genetic distance and heterosis, due to large
G x E and use of a wrong set of markers. The diallel analysis and SSR data established the
important heterotic groups, which will be exploited for efficient development of MSV resistant
maize hybrids. These strategies will be recommended to programs that emphasize MSV
resistance in maize hybrids. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
|
382 |
Breeding of sweet potato (Ipomoea batatas (L.) Lam.) for storage root yield and resistance to Alternaria leaf petiole and stem blight (Alternaria spp.) in Uganda.Sseruwu, Godfrey. January 2013 (has links)
Alternaria leaf petiole and stem blight is an important disease of sweetpotato (Ipomoea
batatas (L.) Lam.) causing yield losses in both landraces and improved cultivars. The most
important species causing economic yield loss in Uganda are Alternaria bataticola and A.
alternate with A. bataticola the most aggressive and widely distributed. The study was
conducted to: i) establish farmer-preferred sweet potato attributes, production constraints and
Alternaria leaf petiole and stem blight awareness; ii) evaluate Ugandan sweet potato
germplasm for Alternaria leaf petiole and stem blight resistance; iii) determine the mode of
inheritance of resistance to Alternaria leaf petiole and stem blight and storage root yield
components of sweet potato through estimation of the general combining ability (GCA) of the
parents and the specific combining ability (SCA) of the parents for each cross; and iv)
determine the adaptability and farmer acceptability of selected F1 genotypes across
environments. The participatory rural appraisal was conducted to establish farmer
preferences and production constraints revealed that farmer preferred sweet-potato traits
were high yield, sweetness (taste), early maturity, high dry mass, resistance to pests and
diseases, and in-field root storability after maturity. A majority of the farmers considered
Alternaria leaf petiole and stem blight a serious production constraint causing yield loss of
over 50%. The main control measures against the disease were roguing of infected plants,
spraying with fungicides, use of healthy planting materials and planting resistant genotypes.
Thirty sweet potato land races and improved cultivars were evaluated for Alternaria blight
severity; yield, dry mass, harvest index, sweetpotato weevil (Cylas spp.) damage and
sweetpotato virus disease at two sites (Namulonge and Kachwekano) over three seasons
(2010B, 2011A, 2011B) under Alternaria inoculum and fungicide spray treatments. Landrace
Shock was more resistant to Alternaria blight than Tanzania, the resistant check. Genotypes
NASPOT 1, NASPOT 7, New Kawogo and Dimbuka were the most susceptible. Thirty two
F1 families were generated from 16 parents in two sets in a North Carolina II mating scheme.
The families were evaluated at two sites using a 5 x 7 row-column design with two
replications. There were significant (P<0.05) differences among the families in Alternaria
blight severity. Both GCA and SCA mean squares (MS) for Alternaria blight were highly
significant (P<0.001) but the predominance of GCA sum of squares (SS) for Alternaria blight
at 67.4% of the treatment SS versus 32.6% for SCA SS indicated that additive effects were
more important than the non-additive effects in controlling this trait. For the yield
components, the GCA MS were significant (P<0.05) and accounted for more than 60% of
the treatment SS except for percentage dry mass composition where SCA SS accounted for
53.0% of the treatment SS implying that non-additive genetic effects were slightly more
important than additive for this trait. Some parents that had desirable high, negative GCA
effects for Alternaria blight produced families with undesirable positive SCA effects and the reverse was also true. This implied that the best parents should not be chosen based on GCA effects alone but also on SCA effects of their best crosses. The promising F1 genotypes selected from previously evaluated crosses together with one Alternaria blight resistant check (Tanzania) and one susceptible check (NASPOT 1) were evaluated at three sites (Namulonge, Kachwekano and Serere) using a randomised complete block design with three replications. Scientists and farmers evaluated the agronomic performance and also quality traits of the genotypes before and at harvest. Genotypes G14, G16, G24, G29, G49, G59 and G69 were the most stable across the sites for low Alternaria blight severity and can, therefore, be recommended for further evaluation under both low and high disease pressure areas. Genotypes G67, G13, G14, G24, G29 and G53 were the most high yielding and stable across the sites and were therefore the most widely adapted. In the participatory selection, before harvest and at harvest, Spearman’s rank correlation of the scientists and farmers’ mean ranking of the genotypes at each site was positive and significant. This indicated that the scientists in the study were capable of selecting for farmer preferred traits. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
|
383 |
Breeding for durable resistance to angular leaf spot (Pseudocercospora griseola) in common bean (Phaseolus vulgaris) in Kenya.Njoki, Ng'ayu-Wanjau Beatrice. 13 May 2014 (has links)
Common bean (Phaseolus vulgaris L.) is an important legume crop in Kenya and is a cheap source of proteins. The small scale farmers in Kenya produce common bean under low agricultural input systems and this predisposes the crop to pests and diseases. Among the diseases, angular leaf spot (ALS) is a major constraint to common bean production and contributes to yield losses as high as 80%. The causative pathogen Pseudocercospora griseola (Sacc.) Crous & Braun is highly variable and several races have been reported. There are few common bean genotypes with resistance to this disease. Therefore breeding for resistance to ALS is important for the country. This study was carried out to; i) evaluate the common bean production systems, constraints and farmer varietal preferences in Kenya, ii) evaluate local landraces and selected introductions of common bean for yield performance and reaction to ALS, iii) study the genetics of resistance to ALS in common bean and iv) develop a breeding method for durable resistance to ALS in common bean.
To determine the common bean production systems, farmers’ preferred traits and their knowledge on common bean constraints including ALS, a survey was conducted in Kiambu county using a semi-structured questionnaire, interviews, and focus group discussions. The study revealed that farmers cultivate common beans during the short and long rain seasons. However, they experience better yields in the short rains due to reduced disease incidence. The majority of the farmers (71%) intercrop common bean and this ensures maximum utilisation of space. A high percentage (70%) of the farmers utilise their retained seed for production. The farmers identified ALS as one of the most important constraints to production. The only preventative measure they undertake to control the disease is weeding. The farmers reported that they would prefer improved varieties that were resistant to ALS. Farmers have a preference for particular common bean traits that include high yield (80%), resistance to insect-pests and diseases (72%), type I growth habit (52%), early maturity (68%), seed size and colour (21%) and cooking time (20%). These should be incorporated in breeding programmes.
Two hundred common bean landraces and market class varieties were evaluated for ALS resistance in a nethouse at University of Nairobi, Kabete Field Station and for ALS resistance and yield in the field in KARI-Tigoni. The results showed that disease severity scores for the genotypes were similar in the two locations, with the top three resistant genotypes being Minoire, GBK 028123 and Murangazi with disease severity scores of 2.9, 2.9 and 3.2 in Kabete
and 2.6, 2.8, and 2.9 in Thika respectively. These resistant genotypes can be used as sources of resistance in a breeding programme or they can be used as resistant varieties. All the market class varieties were susceptible to ALS (disease severity score 6.7-8.0). There was a non-significant correlation between disease and yield most likely because most of the resistant genotypes were exotic and hence not adapted to the local conditions. There was also a non-significant correlation between disease and seed size.
The two hundred common bean genotypes were evaluated for yield at University of Nairobi, Kabete Field Station and KARI-Thika. The results indicated that the 2011 and 2012 seasons had similar mean yields and that yields at Kabete were higher than at KARI-Thika. The highest yielding genotypes across the two locations were; GLP 2 (766 kg ha-1), Nyirakanyobure (660 kg ha-1), GBK 028110 (654 kg ha-1), GLP 585 (630 kg ha-1) and Mukwararaye (630 kg ha-1). There was a significant genotype x environment interaction and hence it is important for breeders to carry out stability analysis, so as to recommend varieties for a wide range of environments.
To study the genetics of ALS resistance in common bean, three inter-gene pool crosses: Super-rosecoco x Mexico 54, Wairimu x G10909 and Wairimu x Mexico 54 were made. The resistant genotypes were Mexico 54 and G10909, while Super-rosecoco and Wairimu were susceptible. The generations F1, F2, BC1P1 and BC1P2 for each of the crosses were developed. The parents P1, P2 and the five generations of each cross were evaluated for resistance to ALS in Kabete Field Station. Results showed that both dominance and additive gene action were important in the expression of resistance to ALS. However, additive gene action was predominant over dominance gene action. There was a moderately high narrow sense heritability estimate (52.9-71.7%). The minimum number of genes controlling resistance to ALS was between 2 and 3. The predominance of additive gene effects and the moderately high narrow sense heritability estimates recorded imply that progress in resistance to ALS could be made through selection in the early segregating generations.
A double cross followed by selection against resistant genotypes was used to develop a method to breed for durable resistance to ALS in common bean. The method was used to accumulate minor genes of ALS resistance into single genotypes. Four intermediate resistant landraces were used to develop a double cross population that was screened using a mixture of ALS races. Selection in F1 and F2 population was done on the basis of intermediate resistance (disease severity score 4.0-6.0), while selection from F3 population was based on resistance
(disease severity score 1.0-3.0). Ten advanced F4 lines along with their parents were evaluated for ALS resistance. The F4 advanced lines had a significantly improved resistance to ALS compared to their parents. Hence the method was successful in accumulating minor genes for resistance thus showing significant breeding progress in breeding for durable resistance. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
|
384 |
A study of the diversity, adaptation and gene effects for blast resistance and yield traits in East African finger millet (Eleusine coracana (L.) Gaertn) landraces.Manyasa, Eric Okuku. January 2013 (has links)
Finger millet (Eleusine coracana) productivity in East Africa has remained low in all production agro-ecologies for decades owing to the low yielding potential of existing that are susceptible to the blast disease caused by the fungus Magnaporthe grisea (Hebert) Barr. and the limited research on the crop. The region holds large finger millet germpasm collections whose value is not yet been fully exploited. However, with the ongoing breeding efforts through hybridization, there is a need to comprehensively characterize the germplasm to identify valuable traits to address biotic and abiotic stresses that affect finger millet productivity. Studies on gene action and inheritance of key traits that contribute to yield improvement are also required to help formulate an effective breeding strategy for finger millet improvement. The objectives of this study were to (i) determine the genetic diversity in a set of germplasm from East Africa (ii) determine association between grain yield and its component traits (iii) identify genotypes for target production agro-ecologies (iv) identify blast resistant finger millet genotypes for use in breeding and production and (v) generate information on the inheritance of blast, grain yield and yield components for the development of an effective breeding strategy.
A total of 340 finger millet accessions were collected from three countries in East Africa: Kenya, Tanzania and Uganda and 80 global minicore accessions sourced from ICRISAT-India. High phenotypic variability in the germplasm was recorded for 23 quantitative traits, blast reaction and five qualitative traits. Both morphological and molecular characterization (using SSR markers) of the 340 accessions revealed higher diversity within than among the countries Kenya, Tanzania and Uganda. Seven morphological clusters and three major genetic clusters were detected. Morphological diversity delineation was largely influenced by leaf sheath length, plant height, peduncle length, panicle exertion and grain yield. The mean polymorphic information content (PIC) of 19 polymorphic markers was 0.606 with mean alleles of 195 with sizes that ranged from 148-474 base pairs. The Kenyan and Tanzanian accessions had higher diversity than the Ugandan with the Kenyan and Ugandan, and the Kenyan and Tanzanian accessions being closely related than the Tanzanian and Ugandan. The low diversity in the Ugandan accessions could be attributed to higher research intervention in the country leading to the promotion and use of improved cultivars. Efforts have to be directed towards collection and conservation of valuable diversity before it is lost. The diversity in plant height, maturity, yield and blast reaction and the cluster groups detected in the germplasm should provide a basis for finger millet improvement through hybridization and selection. Higher genotypic than phenotypic correlations were recorded for most of the traits studied with grain yield having high positive correlations with finger width, grains per spikelet, threshing percent, peduncle length and panicle exertion. Both grain yield and days to flowering had negative correlations with all three blast types (leaf, neck and finger). Path coefficient analysis revealed that productive tillers per plant, 1000 grain mass, grains per spikelet and threshing percent had positive direct genetic effects on grain yield with strong indirect effects from several of the other traits which necessitates simultaneous selection for those traits with strong direct effects and those with strong indirect effects for grain yield improvement. High broad sense heritability estimates and high genetic advance as percent of mean were recorded in fingers per panicle, flag leaf sheath length, 1000 grain mass, finger length, peduncle length, panicle exertion, number of leaves per plant and leaf sheath length probably indicating the predominance of additive gene effects in controlling these traits hence the potential for improvement through selection.
Adaptation and stability analysis using the GGE biplot model identified Lanet 2012 long rains, Serere 2012 long rains and Miwaleni 2012 long rains as the most discriminating environments for the low temperature, sub-humid mid altitude and dry lowland areas, respectively. Alupe 2012 long rains was the ideal environment for genotype discrimination for blast while Lanet 2012 long rains was best for grain yield. Genotypes G3, G5, G17, G25, G28, G36 and G71 were identified as being stable across environments and G1, G18, G19, G37, G54, G61, G74, G75, and G77 were found ideal for specific adaptation.
Disease severity scores were highly negatively (P<0.01) correlated with days to flowering and grain yield suggesting that early lines suffered more disease damage leading to reduced yield. Resistant genotypes were slow blasting (probably associated with horizontal resistance) which may enable them to withstand blast pathogen variability for longer periods. Nine genotypes were identified with high resistance to blast and will be useful for breeding as blast resistance sources. Resistant genotypes had low AUDPC values and disease severity rating for the three blast types and vice-versa for susceptible genotypes. Further investigations need to be carried out to determine the possibility of the three blast types being controlled by the same genes. Early maturing blast susceptible genotypes with good yield potential could be utilized in areas with low blast prevalence.
To understand the gene action for inheritance of the various traits 16 F2 families plus their four female and four male parents were evaluated at Alupe and Kakamega western Kenya under artificial blast inoculation. Significant additive genetic effects were recorded for all traits (except for finger width and grains per spikelet) meaning that improvement for these traits would be possible through the common selection methods for self pollinating crops. Parent lines KNE 392, and KNE 744 and IE 11 were found to be suitable for blast resistance breeding while Okhale 1 was found to be suitable for high grain yield and blast resistance improvement due to their high desirable GCA effects. Most of the F2 families showed transgressive segregation for the three blast types in either direction which gives hope for the development new pure lines with better blast resistance than the parents. Crosses IE 3104 x KNE 796, KAT FM 1 x Okhale 1, IE 11 x Okhale, IE 11 x P 224 and KNE 744 x KNE 392 have potential to generate lines with blast resistance due to their high desirable SCA effects. The F2 segregation distributions for blast indicated quantitative inheritance. However the one to four minimum number of genes (effective factors) detected for resistance control in all the three blast types was not in sync with the segregation patterns in the F2 families and further investigations are required. There were differences in segregation patterns between crosses which may suggest the presence of different resistance genes in the different parents used. This would call for gene pyramiding for durable resistance.
These results confirm the potential of sourcing valuable parental stocks in the local germplasm for the development of genotypes to improve finger millet productivity in East Africa. Already some of the high yielding and blast resistant genotypes identified here have been incorporated in the regional cultivar trials. The diversity information generated will facilitate effective conservation and utilization of this germplasm. Results of gene action for inheritance of the various traits from this study will enable breeders to develop sound breeding strategies for finger millet improvement in the region. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
|
385 |
Identification of Ty3gypsy-like sequences in A. thaliana, L. sativa, Lycopersicon, and Z. maysLeclerc-Potvin, Carole. January 1996 (has links)
The nucleotide sequence of a cloned RAPD DNA marker (OPI08) linked to a disease resistance gene in L. sativa (lettuce) revealed homology with the conserved domain of the reverse transcriptase of Ty3/gypsy retrotransposons. To further characterize the presence of Ty3/gypsy-like sequences in plants, sets of degenerate primers deduced from archetype retrotransposons were used for PCR amplification of a sequence domain characteristic of the reverse transcriptase and the integrase of Ty3/gypsy retrotransposons. The nucleotide sequence of two cloned DNA fragments of Z. mays (maize) and A. thaliana proved to be homologous with the conserved domains of the reverse transcriptase and the integrase of Ty3/gypsy retrotransposons. Southern blot analysis also demonstrated homology of the Z. mays clone to Lycopersicon (tomato) and L. sativa. This is the first report of Ty3/gypsy-like sequences in A. thaliana, and L. sativa. This research brings to six the number of plant species where this type of element has been reported, in contrast to the large number of plant Ty1/copia transposable elements described. It is not known whether these elements are actively transposing in plant genomes.
|
386 |
FR‐H3 : a new QTL to assist in the development of fall-sown barley with superior low temperature toleranceFisk, Scott P. 01 December 2011 (has links)
Fall-sown barley will be increasingly important in the era of climate change due to higher yield potential and efficient use of water resources. Resistance/tolerance to biotic and abiotic stresses will be critical. Low temperature is an abiotic stress of great importance. Resistance to barley stripe rust (incited by Puccinia striifomis f. sp. hordei) and scald (incited by Rhynchosporium secalis) will be important in higher rainfall areas. Simultaneous gene discovery and breeding will accelerate the development of agronomically relevant germplasm. The role of FR-H1 and FR-H2 in low temperature tolerance (LTT) has been well documented. However the question still remains: is LTT due only to FR-H1 and FR-H2 or are there other, undiscovered, determinants of this critical trait? We developed two doubled haploid mapping populations using two lines from the University of Nebraska (NE) with superior cold tolerance and one line from Oregon State University (OR) with good malting quality and disease resistance: NB3437f/OR71 (facultative x facultative) and NB713/OR71 (winter x facultative). Both were genotyped with a custom 384 oligonucleotide pool assay (OPA). QTL analyses were performed for LTT, vernalization sensitivity (VS), and resistance to barley stripe rust and scald. Disease resistance QTL were identified with favorable alleles from both NE and OR germplasm. The role of VRN-H2 in VS was confirmed and a novel alternative winter allele at VRN-H3 was discovered in the Nebraska germplasm. FR-H2 was identified as a determinant of LTT and a new QTL, FR-H3, was discovered on chromosome 1H that accounted for up to 48% of the phenotypic variation in field survival at St. Paul, Minnesota, USA. The discovery of FR-H3 is a significant advancement in barley LTT genetics and will assist in developing the next generation of fall-sown varieties. / Graduation date: 2012
|
387 |
Simultaneous improvement in black spot resistance and stem strength in field pea (Pisum sativum L.)Beeck, Cameron January 2006 (has links)
[Truncated abstract] Field pea (Pisum sativum) has many benefits when included in the crop rotation system in broadacre grain farming. These benefits include a disease break and improved weed control for cereals and less dependence on nitrogenous fertilisers due to the leguminous nature of pea. Currently, field pea adoption in Australia is low because the crop is susceptible to the fungal disease `black spot’ (Mycosphaerella pinodes) and has low stem strength and a lodged canopy. Black spot causes yield losses averaging 10-15% per year. Lodging results in difficult and costly harvesting, increased disease pressure and increased wind erosion from exposed soil surface when stems break at the basal nodes. This project aimed to address these problems through breeding, and through the application of quantitative genetics theory to a recurrent selection program. A quantitative measurement of relative stem strength was developed which could be used effectively in the field on single plants. Accurate laboratory measurements of stem strength were closely correlated with the field measure of compressed stem thickness in the basal node region. A diallel analysis of stem strength of the progeny of crosses among a range of pea lines with different values of compressed stem thickness concluded that the genetic control of stem strength was additive, with no maternal inheritance or dominance or epistasis effects.
|
388 |
Oilseed rape transformed with a pea lectin gene : target and non-target insects, plant competition, and farmer attitudes /Lehrman, Anna, January 2007 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv., 2007. / Härtill 5 uppsatser.
|
389 |
Ontwikkeling van molekulere merkers vir wilde-spesie-verhaalde weerstandsgeenkomplekse van gewone koringEksteen, Aletta 03 1900 (has links)
Thesis (MSc (Genetics))--University of Stellenbosch, 2009. / Worldwide, the rust diseases cause significant annual wheat yield losses (Wallwork 1992; Chrispeels & Sadava 1994). The utilization of host plant resistance to reduce such losses is of great importance particularly because biological control avoids the negative environmental impact of agricultural chemicals (Dedryver et al. 1996). The wild relatives of wheat are a ready source of genes for resistance to disease and insect pests. A large degree of gene synteny still exists among wheat and its wild relatives (Newbury & Paterson 2003). It is therefore possible to transfer a chromosome segment containing useful genes to a homologous region in the recipient genome without serious disruption of genetic information. Special cytogenetic techniques are employed to transfer genes from the wild relatives to the wheat genomes (Knott 1989). Unfortunately the transfer of useful genes may be accompanied by the simultaneous transfer of undesirable genes or redundant species chromatin which has to be mapped and removed (Feuillet et al. 2007). DNA markers are extremely useful for the characterisation and shortening of introgressed regions containing genes of interest (Ranade et al. 2001), and may also be used for marker aided selection of the resistance when the genes are employed commercially. Eight wheat lines containing translocations/introgressions of wild species-derived resistance genes were developed by the Department of Genetics (SU). These lines are presently being characterized and mapped and attempts are also being made to shorten the respective translocations. This study aimed to find DNA markers for the various translocations and to convert these into more reliable SCAR markers that can be used in continued attempts to characterize and improve the respective resistance sources.
A total of 260 RAPD and 21 RGAP primers were used to screen the eight translocations and, with the exception of Lr19, it was possible to identify polymorpic bands associated with each translocation. However, it was not possible to convert all of these into more reliable SCAR markers. The primary reason for this was the low repeatability of most of the bands. Certain marker fragments turned out to be repeatable but could not be converted successfully. Some of the latter can, however, be used directly (in RAPD or RGAP reactions) as markers. The Lr19 translocation used in the study (Lr19-149-299) is a significantly reduced version of the original translocation and failure to identify polymorphisms associated with it can probably be ascribed to its small size. The following numbers of markers (direct and converted into SCARs) were Worldwide, the rust diseases cause significant annual wheat yield losses (Wallwork 1992; Chrispeels & Sadava 1994). The utilization of host plant resistance to reduce such losses is of great importance particularly because biological control avoids the negative environmental impact of agricultural chemicals (Dedryver et al. 1996). The wild relatives of wheat are a ready source of genes for resistance to disease and insect pests. A large degree of gene synteny still exists among wheat and its wild relatives (Newbury & Paterson 2003). It is therefore possible to transfer a chromosome segment containing useful genes to a homologous region in the recipient genome without serious disruption of genetic information. Special cytogenetic techniques are employed to transfer genes from the wild relatives to the wheat genomes (Knott 1989). Unfortunately the transfer of useful genes may be accompanied by the simultaneous transfer of undesirable genes or redundant species chromatin which has to be mapped and removed (Feuillet et al. 2007). DNA markers are extremely useful for the characterisation and shortening of introgressed regions containing genes of interest (Ranade et al. 2001), and may also be used for marker aided selection of the resistance when the genes are employed commercially. Eight wheat lines containing translocations/introgressions of wild species-derived resistance genes were developed by the Department of Genetics (SU). These lines are presently being characterized and mapped and attempts are also being made to shorten the respective translocations. This study aimed to find DNA markers for the various translocations and to convert these into more reliable SCAR markers that can be used in continued attempts to characterize and improve the respective resistance sources.
A total of 260 RAPD and 21 RGAP primers were used to screen the eight translocations and, with the exception of Lr19, it was possible to identify polymorpic bands associated with each translocation. However, it was not possible to convert all of these into more reliable SCAR markers. The primary reason for this was the low repeatability of most of the bands. Certain marker fragments turned out to be repeatable but could not be converted successfully. Some of the latter can, however, be used directly (in RAPD or RGAP reactions) as markers. The Lr19 translocation used in the study (Lr19-149-299) is a significantly reduced version of the original translocation and failure to identify polymorphisms associated with it can probably be ascribed to its small size. The following numbers of markers (direct and converted into SCARs) were
v
identified: S8-introgression (Triticum dicoccoides) = one RAPD and two SCARs; S13-translocation (Aegilops speltoides) = four RAPDs, three RGAPs and five SCARs; S15-translocation (Ae. peregrina) = one RAPD and two SCARs; S20-translocation (Ae. neglecta) = two RAPDs, two RGAPs and one SCAR. The markers are already being employed in current projects aiming to map and shorten these translocations. Some of the markers can be combined in multiplex reactions for more effective mass screening. No repeatable markers could be identified for the four remaining translocations (S12 from Ae. sharonensis; S14 from Ae. kotschyi; Smac from Ae. biuncialis and Lr19-149-299 from Thinopyrum ponticum).
|
390 |
Ontwikkeling van ’n koringkwekery met gestapelde, spesie-verhaalde roesweerstandWessels, Elsabet 12 1900 (has links)
Thesis (MSc (Genetics))--University of Stellenbosch, 2010. / Includes bibliography. / ENGLISH ABSTRACT: Wheat rust is a significant contributor to the total impact of diseases on sustainable wheat production. Genetic resistance, produced by using resistance genes from wheat and other related wild species, is the simplest and most cost-effective way to guard against these diseases. The pyramiding of resistance genes in a single line is a vital practice in bringing about durable resistance.
This study aimed to develop a series of doubled haploid (DH) wheat lines containing combination's of wild species genes for rust resistance. Rust resistance genes Lr19 (7BL), Sr31/Lr26/Yr9/Pm8 (1BS) and Lr54/Yr37 (2DL) were combined by means of crossing. Breeders. lines which have complex resistance including Lr24/Sr24 (3DL), Lr34/Yr18 (7D), Sr36 (2BS) and Sr2 (3BS), were used. Marker assisted selection (MAS) was used to type populations for the above mentioned genes. Using the DH method (maize pollination technique), an inbred population was developed from the selected lines, after which the lines were characterised molecularly for the resistance gene translocations which they contain.
The study produced 27 lines with diverse genetic profiles. Seven lines contain four translocations (Lr24/Sr24, Lr34/Yr18, Sr2 and Lr19 or Sr31) each, 11 lines contain three genes each, six lines contain two genes each and only three lines contain a single translocation (Lr24/Sr24). The reality that rust pathogens have already overcome three of the resistance genes in the final population . Lr19, Sr31 and Sr24 . is a clear indication of the value of using non-major gene resistance for bringing about durable resistance. The focus should fall ever more greatly upon the application of quantitative trait loci (QTL) for this purpose, which will result in MAS contributing to the development of more durable resistance.
The value of the integration of MAS and DH in combination with conventional breeding practices in breeding programmes has already been illustrated internationally for increasing the rate of cultivar development and this is reaffirmed by this study. / AFRIKAANSE OPSOMMING: Koringroes lewer jaarliks .n beduidende bydrae tot die totale impak van siektes wat volhoubare koringverbouing belemmer. Die mees eenvoudige en koste-effektiewe verweer teen hierdie siektes is genetiese weerstand, wat deur weerstandsgene vanaf koring, sowel as wilde verwante spesies, bewerkstellig word. Die stapeling van weerstandsgene in .n enkele lyn word as .n onontbeerlike praktyk om duursame weerstand tot stand te bring, geag.
Hierdie studie het ten doel gehad om .n reeks verdubbelde haploiede (VH) koringlyne te ontwikkel wat kombinasies van wilde spesie gene vir roesweerstand bevat. Roesweerstandsgene Lr19 (7BL), Sr31/Lr26/Yr9/Pm8 (1BS) en Lr54/Yr37 (2DL) is deur middel van kruisings gekombineer. Telerslyne wat oor komplekse weerstand beskik wat Lr24/Sr24 (3DL), Lr34/Yr18 (7D), Sr36 (2BS) en Sr2 (3BS) insluit, is gebruik. Merker-bemiddelde seleksie (MBS) is gebruik om populasies vir bogenoemde gene te tipeer. .n Ingeteelde populasie is vanaf die geselekteerde lyne met behulp van die VH metode (mielie-bestuiwing tegniek) ontwikkel, waarna die lyne molekuler vir die weerstandsgeentranslokasies waaroor hul beskik, gekarakteriseer is.
Die studie het 27 lyne met diverse genetiese profiele opgelewer. Sewe lyne bevat vier weerstandsgeentranslokasies (Lr24/Sr24, Lr34/Yr18, Sr2 en Lr19 of Sr31) elk, 11 lyne beskik oor kombinasies van drie gene elk, ses bevat twee gene elk en slegs drie lyne beskik oor .n enkele translokasie (Lr24/Sr24). Die realiteit dat die roespatogene reeds drie van die weerstandsgene in die finale populasie . Lr19, Sr31 en Sr24 . oorkom het, benadruk die waarde van die gebruik van nie-hoofgeenweerstand vir die daarstelling van duursame weerstand. Die fokus behoort toenemend meer op die aanwending van kwantitatiewe kenmerk-loci (QTL) vir hierdie doel te val en sal sodoende teweegbring dat MBS bydra tot die ontwikkeling van meer duursame weerstand.
Die waarde van die integrasie van MBS en VH in kombinasie met konvensionele telingsmetodiek is reeds internasionaal vir die versnelling van kultivarontwikkeling aangetoon en word ook deur hierdie studie herbevestig.
|
Page generated in 0.093 seconds