Spelling suggestions: "subject:"petroleum deology|engineering, petroleum"" "subject:"petroleum deology|engineering, etroleum""
1 |
Porescale Investigation of Gas Shales Reservoir Description by Comparing the Barnett, Mancos, and Marcellus FormationAlaiyegbami, Ayodele O. 25 July 2014 (has links)
<p> This thesis describes the advantages of investigating gas shales reservoir description on a nanoscale by using petrographic analysis and core plug petrophysics to characterize the Barnett, Marcellus and Mancos shale plays. The results from this analysis now indicate their effects on the reservoir quality. Helium porosity measurements at confining pressure were carried out on core plugs from this shale plays. SEM (Scanning Electron Microscopy) imaging was done on freshly fractured gold-coated surfaces to indicate pore structure and grain sizes. Electron Dispersive X-ray Spectroscopy was done on freshly fractured carbon-coated surfaces to tell the mineralogy. Extra-thin sections were made to view pore spaces, natural fractures and grain distribution. </p><p> The results of this study show that confining pressure helium porosity values to be 9.6%, 5.3% and 1.7% in decreasing order for the samples from the Barnett, Mancos and Marcellus shale respectively. EDS X-ray spectroscopy indicates that the Barnett and Mancos have a high concentration of quartz (silica-content); while the Mancos and Marcellus contain calcite. Thin section analysis reveals obvious fractures in the Barnett, while Mancos and Marcellus have micro-fractures. </p><p> Based on porosity, petrographic analysis and mineralogy measurements on the all the samples, the Barnett shale seem to exhibit the best reservoir quality.</p>
|
2 |
Reservoir Characterization of the Spraberry Formation, Borden County, West TexasDada, Olamide 25 July 2014 (has links)
<p> The Spraberry Formation is a Leonardian age submarine fan deposit restricted to the Midland Basin. The formation consists of very fine-grained sandstone, medium to coarse grain size siltstones, organic shales and carbonate mudstones. These rocks show variability in sedimentary structures and bedding types varied from thinly laminated to convolute laminations. Bioturbations were present in some samples and soft sediment deformation, such as water escape features, sediment loading and flame structures. </p><p> The Spraberry Formation is a naturally fractured reservoir with low porosity and low matrix permeability. Porosity measured varied from 2% in rocks with poor reservoir quality such as the argillaceous siltstone and mudstone while good reservoir rocks had an average porosity of 9%. Seven lithofacies were identified based on sedimentary structures, grain size and rock fabrics. Petrographic analysis showed four porosity types: (1) intragraular porosity; (2) dissolution porosity; (3) fracture porosity and (4) intergranular porosity. Fractured porosity was only observed in the argillaceous siltstone lithofacies. </p><p> The prominent diagenetic influences on the Spraberry Formation are: quartz cementation, quartz overgrowth, illtization of smectite, feldspar dissolution, clay precipitation, carbonate cementation, formation of framboidal pyrite and fracture formation. These diagenetic features were observed using scanning electron microscope (SEM) and in thin sections. Generally, petrophysical properties, such as porosity and permeability, vary gradually from reservoir rocks to non-reservoir rock. Observed trends where: 1) increasing organic and argillaceous content with decreasing porosity and 2) increasing carbonate sediments and calcite cements with decreasing porosity. Mineralogical analysis from FTIR showed an abundance of quartz and calcite, while illite is the prominent clay mineral observed in all samples.</p>
|
Page generated in 0.1212 seconds