• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Geology and Petrology of Enigmatic Rhyolites at Graveyard and Gordon Buttes, Mount Hood Quadrangle, Oregon

Westby, Elizabeth G. 12 December 2014 (has links)
Rhyolite lava flows are found at two dome complexes at Graveyard Butte and Gordon Butte, Mount Hood Quadrangle, Oregon. At Graveyard Butte, the White River has cut a winding canyon 150 m deep, exposing at its base, a 40-meter-thick outcrop of flow-banded rhyolite (73 wt.% SiO2, 3.67±0.01 Ma) that laterally extends along the canyon wall for about 1 km. Stratigraphically above the flow-banded rhyolite is locally-erupted iron-rich andesites (lava flows, agglutinate and other pyroclastic rocks as well as clastic debris), a rhyolitic ash-flow tuff (74 wt.% SiO2), and the 2.77±0.36 Ma tholeiitic basalt lava flows of Juniper Flat (Sherrod and Scott, 1995). Roughly 2 km downstream, a phenocryst-poor, maroon-colored rhyolite (3.65±0.01 Ma) is visible again, forming steep canyon walls for about 1.6 km. A compositionally similar silicic unit is found 18 km to the northwest of Graveyard Butte at Gordon Butte. Exposed units along Gordon Butte's Badger Creek (3.64±0.03 Ma) and the southeastern upper slopes of Gordon Butte include rhyolite flows (69.6-72.1 wt.% SiO 2). The rhyolite lava flows at Graveyard Butte and Gordon Butte's Badger Creek are nearly chemically indistinguishable and both contrast with the younger rhyolitic ash-flow tuff at Graveyard Butte and lava flows on Gordon Butte's Upper Slopes. The rhyolites of Graveyard Butte and Badger Creek are richer in Nb and Zr (30-40 ppm and 487-530 ppm, respectively) than the younger rhyolitic tuff and Upper Slopes flows (13-19 ppm and 235-364 ppm, respectively) and share characteristics with A-type granitoids. The rhyolite lavas are porphyritic (~7%) with the porphyroclasts comprising primarily individual feldspars (250-500 µm in length) with ragged margins, oscillatory zoning and less commonly, spongy cores. Other phenocrystic phases include fayalitic olivine, Fe-rich clinopyroxene, and Fe-Ti oxides. A-type-like incompatible trace-element-enriched compositions as well as mineralogical indicators suggest rhyolite lava flows at Graveyard Butte and Gordon Butte's Badger Creek are likely generated in an extensional tectonic setting. A possible geotectonic framework for generation of these rhyolite lavas is the northward propagating intra-arc rift of the Oregon Cascades.

Page generated in 0.0543 seconds