• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4429
  • 46
  • 14
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4526
  • 4016
  • 4016
  • 845
  • 624
  • 567
  • 551
  • 532
  • 511
  • 487
  • 468
  • 418
  • 402
  • 388
  • 328
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Self: a metaphysical theory

January 1973 (has links)
acase@tulane.edu
252

Sense and transcendence: a study in Johann Georg Hamann's philosophy of language

January 1967 (has links)
acase@tulane.edu
253

Some results in ring theory: i. an extension of the Wedderburn-Artin theorem. ii. semigroup methods in ring theory

January 1967 (has links)
acase@tulane.edu
254

Some theorems in constructive function theory

January 1963 (has links)
acase@tulane.edu
255

Some topics in topological algebra

January 1962 (has links)
acase@tulane.edu
256

Some wild embeddings of the one and two dimensional spheres in the three sphere

January 1963 (has links)
acase@tulane.edu
257

Slenderness in Abelian categories

January 1983 (has links)
Our setting for the study of slenderness is quite general: we define slenderness in arbitrary abelian categories which have products and coproducts. An object S in such a category C is called slender if for every family {A(,n)}(,n(ELEM) ) of objects in C, the obvious monomorphism (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI) is an isomorphism of abelian groups This notion proves to be as useful as for abelian groups; in fact many results on slender abelian groups carry over mutatis mutandis to this general case. However, while in the case of groups, we could take advantage of very specific properties, those properties were not available here, thus a new approach was necessary. Namely the concept of a filtration A = V(,0) (R-HOOK) V(,1) (R-HOOK) ... (R-HOOK) V(,n) (R-HOOK) ... of an object A and its (Hausdorff) completion (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI) play a very important role since no complete object can be slender. The fundamental theorem characterizing slenderness is the following: An S (ELEM) obj C is slender if and only if (1) for every family {A(,n)}(,n(ELEM) ) of objects in C C( A(,n)/ A(,n),S) = 0, and (2) S does not have a subobject which is complete in a nondiscrete Hausdorff filtration In module categories, we obtain more results of topological nature, which allow us to further specify our description of slender objects: An R-Module M is slender if and only if for every family of cyclic modules {Ra(,n)}(,n(ELEM) ), we have (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI) is not a submodule of M, and (3) M does not contain any completion of Ra(,n) in a nondiscrete metrizable linear topology These seem to be the best possible results on slenderness in the general setting of abelian categories and arbitrary module categories, respectively. In order to get more informative results, we impose additional hypotheses as some restrictions on the cardinality of generating sets of the quotient field Q of a domain R. The distinction between countable and uncountable case is crucial / acase@tulane.edu
258

Society and experience: a critical examination of the social philosophies of Royce, Mead and Sellars

January 1970 (has links)
acase@tulane.edu
259

Some topics in compact transformation groups

January 1967 (has links)
acase@tulane.edu
260

Some uses of the concept of causality in theories of explanation

January 1968 (has links)
acase@tulane.edu

Page generated in 0.0311 seconds