Spelling suggestions: "subject:"cyanobacteria interactions"" "subject:"lactobacteria interactions""
1 |
GLOBAL PROTEOME INVESTIGATION OF MYCOBACTERIOPHAGE OCHI17-MYCOBACTERIUM SMEGMATIS INTERACTIONSIkenna O Okekeogbu (9243635) 14 August 2020 (has links)
<p>Bacteriophages (phages) have broad applications in diverse areas including phage therapy, agriculture, food safety, and environmental protection. In order to fully realize the potential for phage applications, it is critical to understand phage-bacteria interactions and characterize bacterial responses/targets to phage infection. Previous studies have largely focused on other classes of phages other than mycobacteriophages. This research provides the first global proteome investigation of the dynamic relationship between a mycobacteriophage and a mycobacterial host. Mycobacteriophages are viruses that infect mycobacteria. They have been reported to have vital potential uses in various fields, especially as an alternative in the prevention and treatment of mycobacterial diseases such as tuberculosis. Despite their potential, not much is known about the molecular interaction with mycobacteria during a mycobacteriophage infection, especially at the translational level. To better understand this, a novel mycobacteriophage, Ochi17 was first isolated and characterized based on the genome and structure. I then applied label-free quantitative proteomics using the model host, <i>Mycobacteria smegmatis</i>,which<i> </i>was infected with Ochi17<i> </i>at different infection time points. Phage Ochi17 was found to be a temperate phage and classified as a Siphoviridae. The proteome changes occurring at the mid-lytic stage of Phage Ochi17 infection was first examined followed by a temporal study of the global changes. More than 2,000 <i>M. smegmatis</i> proteins and at least 50 Ochi17 proteins were identified across all time points. Homologous recombination and host macromolecular synthetic processes were significantly upregulated, while lipid metabolism was significantly downregulated. The results suggested that Ochi17 suppressed the growth of Mycobacterium smegmatis not just by utilizing the macromolecular synthesis of the host, but also by suppressing host transcription, and fatty acid biosynthesis, in addition to the degradation of fatty acids irrespective of infection time. The two-component system was a target at only 24 h post infection. I also showed that phage Ochi17 proteome expression is time-dependent and the proteins typically cluster based on functional relatedness. The results presented here may contribute in the development of mycobacteriophages as antimicrobial therapies that can overcome various defense strategies employed by host mycobacteria.</p>
|
2 |
Le rôle des rétroactions écologiques et évolutives dans la structure des microbiomesMadi, Naïma 04 1900 (has links)
Les communautés bactériennes sont constituées d’un grand éventail d’espèces pouvant interagir entre elles dans des environnements spatialement hétérogènes tels que le sol, les plantes ou l'intestin humain. À quel point ces interactions stimulent ou entravent la diversité du microbiome demeure inconnu. Historiquement, deux hypothèses ont été proposées pour expliquer comment les interactions interespèces pourraient influencer la diversité. L’hypothèse ‘l’écologie contrôle’ (EC) prédit une relation négative, dans laquelle l'évolution ou la migration de nouvelles espèces est freinée à mesure que les niches se saturent. En revanche, l’hypothèse ‘la diversité engendre la diversité’ (DBD) prédit une relation positive, où la diversité existante favorise l'accumulation d'une plus grande diversité à travers des interactions telles que la construction de niche.
De nombreuses études ont investigué ces modèles chez les vertébrés ou les plantes, et certaines les ont testés sur des bactéries en culture ; mais le modèle qui régit les communautés bactériennes naturelles demeure inconnu. En utilisant les données du gène ARN ribosomique 16S provenant d’un large éventail de microbiomes, j'ai montré une relation positive générale entre la diversité des taxons et la diversité des communautés de niveaux taxonomiques plus élevés. Cette observation est conforme à l’hypothèse du DBD, mais cette tendance positive plafonne à des niveaux élevés de diversité en raison des limites physiques de la niche.
Ensuite, j'ai observé que le modèle DBD restait valide à une résolution plus fine, en analysant la variation génétique intra espèce dans les métagénomes des microbiomes intestinaux humains. Conformément au DBD, j'ai observé que le polymorphisme génétique ainsi que le nombre de souches intra espèces étaient positivement corrélés avec la diversité Shannon de la communauté.
Dans le chapitre 3, j'ai examiné les interactions antagonistes entre V. cholerae et ses phages virulents et la manière dont ces interactions affectaient le cours de l’infection et la diversité génétique de V. cholerae chez les patients infectés.
J'ai quantifié les abondances relatives de V. cholerae et des phages virulents associés dans plus de 300 métagénomes provenant de selles de patients atteints de choléra, tout en tenant compte de leur exposition aux antibiotiques. Les phages et les antibiotiques ont supprimé V. cholerae et ont été associés à une déshydratation légère chez les patients. J'ai également investigué les mécanismes de défense contre les phages dans V. cholerae et découvert que les éléments connus de résistance aux phages (integrative conjugative elements, ICEs) étaient associés à de faibles rapports phage: V. cholerae. J’ai pu montrer aussi que lorsque les ICEs ne sont pas détectés, la résistance aux phages semble être acquise par l’accumulation de mutations ponctuelles non synonymes.
Mes résultats valident que les phages virulents sont un facteur qui protège contre le choléra tout en sélectionnant la résistance dans le génome de V. cholerae. / Bacterial communities harbor a broad range of species interacting within spatially heterogeneous environments such as soil, plants or the human gut. The extent to which these interactions drive or impede microbiome diversity is not well understood. Historically, two hypotheses have been suggested to explain how species interactions could influence diversity. The ‘Ecological Controls’ (EC) hypothesis predicts a negative relationship, where the evolution or migration of novel species is constrained as niches become filled. In contrast, the ‘Diversity Begets Diversity’ (DBD) hypothesis predicts a positive relationship, with existing diversity promoting the accumulation of further diversity via niche construction and other interactions.
Many studies investigated these models in vertebrates or plants, some focused on cultured bacteria, but we still lack insights into how natural communities are assembled in the context of these two hypotheses. Using 16S RNA gene amplicon data across a broad range of microbiomes, I showed a general positive relationship between taxa diversity and community diversity at higher taxonomic levels, consistent with DBD. Due to niche’ limits, this positive trend plateaus at high levels of community diversity.
Then, I found that DBD holds at a finer resolution by analyzing intra-species strain and nucleotide variation in sampled metagenomes from human gut microbiomes. Consistent with DBD, I observed that both intra-species polymorphism and strain number were positively correlated with community Shannon diversity.
In Chapter 3, I investigated the antagonistic interactions between V. cholerae and its virulent phages and how these interactions affect the course of the infection and the within V. cholerae genetic diversity in natural infections.
I quantified relative abundances of Vibrio cholerae (Vc) and associated phages in 300 metagenomes from cholera patients stool, while accounting for antibiotic exposure. Both phages and antibiotics suppressed V. cholerae and were inversely associated with severe dehydration. I also looked at V. cholerae phage-defense mechanisms and found that known phage-resistance elements (integrative conjugative elements, ICEs) were associated with lower phage:V. cholerae ratios. In the absence of detectable ICEs, phages selected for nonsynonymous point mutations in the V. cholerae genome.
My findings validate that phages may protect against severe cholera while also selecting for resistance in the V. cholerae genome within infected patients.
|
Page generated in 0.105 seconds