• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 12
  • 12
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Enhancing herbicide efficacy on reed canary grass <i>(Phalaris arundinacea)</i> by testing a plant growth hormone, application times, and herbicide type

Fong, Denise Lynn 28 May 2013 (has links)
No description available.
12

A biofilter process for phytoplankton removal prior to potable water treatment works : a field and laboratory study

Castro-Castellon, Ana January 2016 (has links)
Phytoplankton blooms compromise the quality of freshwater ecosystems and the efficient processing of water by treatment works worldwide. This research aims to determine whether in-situ filamentous biofiltration processes mediated by living roots and synthetic filters as media can reduce or remove the phytoplankton loading (micro-algae and cyanobacteria) prior to a potable water treatment works intake. The underlying biofiltration mechanisms were investigated using field and laboratory studies. A novel macroscale biofilter with three plant species, named the "Living-Filter", installed in Farmoor II reservoir, UK, was surveyed weekly for physicochemical and biological variables under continuous flow conditions during 17 weeks. The efficiency of a mesoscale biofilter using the aquatic plant Phalaris arundinacea and synthetic filters, was tested with Microcystis aeruginosa under continuous flow conditions and in batch experiments. The 'simultaneous allelochemical method' was developed for quantifying allelochemicals from Phalaris in aqueous samples. Microscale studies were used to investigate biofilter allelochemical release in response to environmental stressors and Microcystis growth inhibition in filtered and unfiltered aqueous root exudate. Results demonstrate that the removal of phytoplankton biomass by physical mechanisms has a removal efficiency of &le;45% in the "Living-Filter" (filamentous biofilter plus synthetic fabric) and that the removal of Microcystis biomass using only biofilters was 25%. Chemical mechanisms that reduce Microcystis cell numbers are mediated by allelochemicals released from biofilter roots. Root exudate treatments on Microcystis revealed that Microcystis growth is inhibited by allelochemicals, not by nutrient competition, and that protists and invertebrates play a role in removing Microcystis. Filamentous biofilters can remove phytoplankton biomass by physical, chemical and biological mechanisms. Biofilters and synthetic filters in combination improve removal efficiency. Application of macroscale biofilters prior to potable water treatment works benefits the ecosystem. Plant properties, biofilter size to surface water ratio, and retention time must be considered to maximise the benefits of biofiltration processes.

Page generated in 0.0782 seconds