• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of ultrasound in pharmaceutical processing and analytics

Apshingekar, Prafulla P. January 2014 (has links)
Innovations and process understanding is the current focus in pharmaceutical industry. The objective of this research was to explore application of high power ultrasound in the slurry crystallisation and application of low power ultrasound (3.5 MHz) as process analytical technology (PAT) tool to understand pharmaceutical processing such as hot melt extrusion. The effect of high power ultrasound (20 kHz) on slurry co-crystallisation of caffeine / maleic acid and carbamazepine / saccharin was investigated. To validate low power ultrasound monitoring technique, it was compared with the other techniques (PAT tools) such as in-line rheology and in-line NIR spectroscopy. In-line rheological measurements were used to understand melt flow behaviour of theophylline / Kollidon VA 64 system in the slit die attached to the hot melt extruder. In-line NIR spectroscopic measurements were carried out for monitoring any molecular interactions occurring during extrusion. Physical mixtures and the processed samples obtained from all experiments were characterised using powder X-ray diffraction, thermogravimetry analysis, differential scanning calorimetry, scanning Electron Microscopy, dielectric spectroscopy and high performance liquid chromatography, rotational rheology, fourier transform infrared spectroscopy and near infrared spectroscopy. The application of high power ultrasound in slurry co-crystallisation of caffeine / maleic acid helped in reducing equilibrium time required for co-crystal formation. During carbamazepine / saccharin co-crystallisation high power ultrasound induced degradation of carbamazepine was negligible. Low power ultrasound can be used as a PAT tool as it was found to be highly sensitive to the changes in processing temperatures and drug concentration.
2

Applications of ultrasound in pharmaceutical processing and analytics.

Apshingekar, Prafulla P. January 2014 (has links)
Innovations and process understanding is the current focus in pharmaceutical industry. The objective of this research was to explore application of high power ultrasound in the slurry crystallisation and application of low power ultrasound (3.5 MHz) as process analytical technology (PAT) tool to understand pharmaceutical processing such as hot melt extrusion. The effect of high power ultrasound (20 kHz) on slurry co-crystallisation of caffeine / maleic acid and carbamazepine / saccharin was investigated. To validate low power ultrasound monitoring technique, it was compared with the other techniques (PAT tools) such as in-line rheology and in-line NIR spectroscopy. In-line rheological measurements were used to understand melt flow behaviour of theophylline / Kollidon VA 64 system in the slit die attached to the hot melt extruder. In-line NIR spectroscopic measurements were carried out for monitoring any molecular interactions occurring during extrusion. Physical mixtures and the processed samples obtained from all experiments were characterised using powder X-ray diffraction, thermogravimetry analysis, differential scanning calorimetry, scanning Electron Microscopy, dielectric spectroscopy and high performance liquid chromatography, rotational rheology, fourier transform infrared spectroscopy and near infrared spectroscopy. The application of high power ultrasound in slurry co-crystallisation of caffeine / maleic acid helped in reducing equilibrium time required for co-crystal formation. During carbamazepine / saccharin co-crystallisation high power ultrasound induced degradation of carbamazepine was negligible. Low power ultrasound can be used as a PAT tool as it was found to be highly sensitive to the changes in processing temperatures and drug concentration.
3

Polymer processing using dense gas technology

Yoganathan, Roshan Bertram, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
The use of dense CO2 in polymer processing can provide a response to the need for more environmentally-friendly industrial processes. Products with high-purity, sterility, and porosity can be achieved using dense gas technology (DGT). Currently, DGT has been used in different aspects of polymer processing including polymerization, micronization, and impregnation. Due to its solubility in polymers, CO2 can penetrate and plasticize polymers, while impregnating them with low-molecular weight CO2 -soluble compounds. Biodegradable polymers and other medical-grade polymers have benefited from the application of DGT. Dense CO2 processing properties of inertness, non-toxicity, and affinity for various therapeutic compounds are specifically advantageous to the medical and biomedical industries. In this work, the different applications of DGT in polymer processing are revised, then implemented. The polymerization of polycarbonate (PC) and polycaprolactone (PCL) in dense CO2 are presented. The syntheses of both polymers were successful and were aided by the use of dense CO2 . A multi-stage approach using dense CO2 as a sweep fluid to extract the PC polymerization by-product phenol is reported. Polycaprolactone was synthesized with varying temperatures and dense CO pressures, then impregnated with a CO2 -soluble therapeutic agent. The impregnated PCL acted as a drug reservoir with a drug-loading of 27wt% and a sustained drug release profile was observed for all samples over several days. Polymer blends of PC/PCL have potential industrial and biomedical applications both in vivo and in vitro. The applicability of PCL can be extended by enhancing its mechanical properties by creating a bio-blend with a stronger polymer such as PC. In this work, PC/PCL nonporous and porous blends were produced. Three novel dense CO2 blending techniques were used. The macroporous PC/PCL blend was impregnated with a therapeutic agent using CO2 as the carrier. A drug loading of 20wt% was achieved and sustained drug release was observed over 3 days. The applicability of dense CO2 in polymer processing was further demonstrated by sterilizing macroporous PC/PCL blends and soft hydrogels with dense CO2 . The PC/PCL blends and hydrogels were inoculated with vegetative bacteria and bacterial endospores. Industrial standard sterilization levels were achieved.

Page generated in 0.0978 seconds