• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 8
  • 4
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 12
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimising a launch : Important factors affecting a new pharmaceutical launch in Sweden

Smedsrud, Sabina, Ekdahl, Simon, Näslund, Emil January 2019 (has links)
This master thesis explores the launch process of new pharmaceuticals in Sweden. The path of a pharmaceutical from idea to innovation is a long and arduous process with only few new products actually reaching the patients in the end. Seeing as the drug development is also an expensive process, it is of importance that the products that get approval meet their expected revenue. New pharmaceuticals can also be life changing for the patient, and thus it is important that once approval is received the patients gain access to the new treatments. This study focuses on the post regulatory approval processes in Sweden, as well as activities carried out by the companies that affect the adoption of a new product. By utilizing a qualitative study, this thesis aims to describe the internal and external factors that affect the pharmaceutical launch process in Sweden. As well as exploring what future initiatives and possible changes that might affect it. Ten interviews with different company representatives as well as six interviews with governmental and regional stakeholders were analysed using grounded theory to answer what factors affect the adoption of new pharmaceuticals. Factors that were found to be important were: Utilisation of cross-functional teams, clear and simple strategy that includes the whole organisation, communicating with national and regional authorities, and get feedback from these, communicate with patient representatives and organisations as well as developing utility services for the product. From a couple of these factors a trend towards the servicification of the pharmaceutical industry was discovered.
2

Exploring the Potential of Camelid Single-Domain Antibodies : Structure, Properties and Diverse Applications in Therapeutics and Diagnostics

Axelson, Linnéa, Berg, Loova, Blomkvist, Anna, El-Zein, Nora, Grenholm, Elin, Hemmingsson, Nora, Mosebach, Sara January 2023 (has links)
No description available.
3

Enhanced biocatalyst production for (R)-phenylacetylcarbinol synthesis

Chen, Allen Kuan-Liang, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
The enzymatic production of R-phenylacetylcarbinol (R-PAC), with either whole cells or partially purified pyruvate decarboxylase (PDC) as the biocatalyst, requires high PDC activity and an inexpensive source of pyruvate for an economical feasible biotransformation process. Microbial pyruvate produced by a vitamin auxotrophic strain of Candida glabrata was selected as a potential substrate for biotransformation. With an optimal thiamine concentration of 60 ??g/l, a pyruvic acid concentration of 43 g/l and yield of 0.42 g/g glucose consumed were obtained. Using microbially-produced unpurified pyruvate resulted in similar PAC concentrations to those with commercial pure substrate confirming its potential for enzymatic PAC production. To obtain high activity yeast PDC, Candida utilis was cultivated in a controlled bioreactor. Optimal conditions for PDC production were identified as: fermentative cell growth at initial pH at 6.0 followed by pH downshift to 3.0. Average specific PDC carboligase activity of 392 ?? 20 U/g DCW was achieved representing a 2.7-fold increase when compared to a constant pH process. A mechanism was proposed in which the cells adapted to the pH decrease by increasing PDC activity to convert the accumulated internal pyruvic acid via acetaldehyde to ethanol thereby reducing intracellular acidification. The effect of pH shift on specific PDC activity of Saccharomyces cerevisiae achieved a comparable increase of specific PDC carboligase activity to 335 U/g DCW. The effect of pyruvic acid at pH 3.0 on induction of PDC activity was confirmed by cultivation at pH 3 with added pyruvic acid. Using microarray techniques, genome-wide transcriptional analyses of the effect of pH shift on S. cerevisiae revealed a transient increased expression of PDC1 after pH shift, which corresponded to the increase in specific PDC activity (although the latter was sustained for a longer period). The results showed significant gene responses to the pH shift with approximately 39 % of the yeast genome involved. The induced transcriptional responses to the pH shift were distinctive and showed only limited resemblance to gene responses reported for other environmental stress conditions, namely increased temperature, oxidative conditions, reduced pH (succinic acid), alkaline pH and increased osmolarity.
4

Synthesis and development of manufacturing processes for biopharmaceuticals /

Fung, Ho Ki. January 2003 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references. Also available in electronic version. Access restricted to campus users.
5

Enhanced biocatalyst production for (R)-phenylacetylcarbinol synthesis

Chen, Allen Kuan-Liang, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
The enzymatic production of R-phenylacetylcarbinol (R-PAC), with either whole cells or partially purified pyruvate decarboxylase (PDC) as the biocatalyst, requires high PDC activity and an inexpensive source of pyruvate for an economical feasible biotransformation process. Microbial pyruvate produced by a vitamin auxotrophic strain of Candida glabrata was selected as a potential substrate for biotransformation. With an optimal thiamine concentration of 60 ??g/l, a pyruvic acid concentration of 43 g/l and yield of 0.42 g/g glucose consumed were obtained. Using microbially-produced unpurified pyruvate resulted in similar PAC concentrations to those with commercial pure substrate confirming its potential for enzymatic PAC production. To obtain high activity yeast PDC, Candida utilis was cultivated in a controlled bioreactor. Optimal conditions for PDC production were identified as: fermentative cell growth at initial pH at 6.0 followed by pH downshift to 3.0. Average specific PDC carboligase activity of 392 ?? 20 U/g DCW was achieved representing a 2.7-fold increase when compared to a constant pH process. A mechanism was proposed in which the cells adapted to the pH decrease by increasing PDC activity to convert the accumulated internal pyruvic acid via acetaldehyde to ethanol thereby reducing intracellular acidification. The effect of pH shift on specific PDC activity of Saccharomyces cerevisiae achieved a comparable increase of specific PDC carboligase activity to 335 U/g DCW. The effect of pyruvic acid at pH 3.0 on induction of PDC activity was confirmed by cultivation at pH 3 with added pyruvic acid. Using microarray techniques, genome-wide transcriptional analyses of the effect of pH shift on S. cerevisiae revealed a transient increased expression of PDC1 after pH shift, which corresponded to the increase in specific PDC activity (although the latter was sustained for a longer period). The results showed significant gene responses to the pH shift with approximately 39 % of the yeast genome involved. The induced transcriptional responses to the pH shift were distinctive and showed only limited resemblance to gene responses reported for other environmental stress conditions, namely increased temperature, oxidative conditions, reduced pH (succinic acid), alkaline pH and increased osmolarity.
6

Bioprocess development for (R)-phenylacetylcarbinol (PAC) synthesis in aqueous/organic two-phase system

Gunawan, Cindy, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
(R)-phenylacetylcarbinol or R-PAC is a chiral precursor for the synthesis of pharmaceuticals ephedrine and pseudoephedrine. PAC is produced through biotransformation of pyruvate and benzaldehyde catalyzed by pyruvate decarboxylase (PDC) enzyme. The present research project aims at characterizing a two-phase aqueous/organic process for enzymatic PAC production. In a comparative study of several selected yeast PDCs, the highest PAC formation was achieved in systems with relatively high benzaldehyde concentrations when using C. utilis PDC. C. tropicalis PDC was associated with the lowest by-product acetoin formation although it also produced lower PAC concentrations. C. utilis PDC was therefore selected as the biocatalyst for the development of the two-phase PAC production. From an enzyme stability study it was established that PDC deactivation rates in the twophase aqueous/octanol-benzaldehyde system were affected by: (1) soluble octanol and benzaldehyde in the aqueous phase, (2) agitation rate, (3) aqueous/organic interfacial area, and (4) initial enzyme concentration. PDC deactivation was less severe in the slowly stirred phase-separated system (low interfacial area) compared to the rapidly stirred emulsion system (high interfacial area), however the latter system was presumably associated with a faster rate of organic-aqueous benzaldehyde transfer. To find a balance between maintaining enzyme stability while enhancing PAC productivity, a two-phase system was designed to reduce the interfacial contact by decreasing the organic to aqueous phase volume ratio. Lowering the ratio from 1:1 to 0.43:1 resulted in increased overall PAC production at 4??C and 20??C (2.5 M MOPS, partially purified PDC) with a higher concentration at the higher temperature. The PAC was highly concentrated in the organic phase with 212 g/L at 0.43:1 in comparison to 111 g/L at 1:1 ratio at 20??C. The potential of further two-phase process simplification was evaluated by reducing the expensive MOPS concentration to 20 mM (pH controlled at 7.0) and employment of whole cell PDC. It was found that 20??C was the optimum temperature for PAC production in such a system, however under these conditions lowering the phase ratio resulted in decreased overall PAC production. Two-phase PAC production was relatively low in 20 mM MOPS compared to biotransformations in 2.5 M MOPS. Addition of 2.5 M dipropylene glycol (DPG) into the aqueous phase with 20 mM MOPS at 0.25:1 ratio and 20??C improved the production with organic phase containing 95 g/L PAC. Although the productivity was lower, the system may have the benefit of a reduction in production cost.
7

Bioprocess development for (R)-phenylacetylcarbinol (PAC) synthesis in aqueous/organic two-phase system

Gunawan, Cindy, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2006 (has links)
(R)-phenylacetylcarbinol or R-PAC is a chiral precursor for the synthesis of pharmaceuticals ephedrine and pseudoephedrine. PAC is produced through biotransformation of pyruvate and benzaldehyde catalyzed by pyruvate decarboxylase (PDC) enzyme. The present research project aims at characterizing a two-phase aqueous/organic process for enzymatic PAC production. In a comparative study of several selected yeast PDCs, the highest PAC formation was achieved in systems with relatively high benzaldehyde concentrations when using C. utilis PDC. C. tropicalis PDC was associated with the lowest by-product acetoin formation although it also produced lower PAC concentrations. C. utilis PDC was therefore selected as the biocatalyst for the development of the two-phase PAC production. From an enzyme stability study it was established that PDC deactivation rates in the twophase aqueous/octanol-benzaldehyde system were affected by: (1) soluble octanol and benzaldehyde in the aqueous phase, (2) agitation rate, (3) aqueous/organic interfacial area, and (4) initial enzyme concentration. PDC deactivation was less severe in the slowly stirred phase-separated system (low interfacial area) compared to the rapidly stirred emulsion system (high interfacial area), however the latter system was presumably associated with a faster rate of organic-aqueous benzaldehyde transfer. To find a balance between maintaining enzyme stability while enhancing PAC productivity, a two-phase system was designed to reduce the interfacial contact by decreasing the organic to aqueous phase volume ratio. Lowering the ratio from 1:1 to 0.43:1 resulted in increased overall PAC production at 4??C and 20??C (2.5 M MOPS, partially purified PDC) with a higher concentration at the higher temperature. The PAC was highly concentrated in the organic phase with 212 g/L at 0.43:1 in comparison to 111 g/L at 1:1 ratio at 20??C. The potential of further two-phase process simplification was evaluated by reducing the expensive MOPS concentration to 20 mM (pH controlled at 7.0) and employment of whole cell PDC. It was found that 20??C was the optimum temperature for PAC production in such a system, however under these conditions lowering the phase ratio resulted in decreased overall PAC production. Two-phase PAC production was relatively low in 20 mM MOPS compared to biotransformations in 2.5 M MOPS. Addition of 2.5 M dipropylene glycol (DPG) into the aqueous phase with 20 mM MOPS at 0.25:1 ratio and 20??C improved the production with organic phase containing 95 g/L PAC. Although the productivity was lower, the system may have the benefit of a reduction in production cost.
8

Development of isoflavonoid-derived anti-prostatic cancer agents

Faragalla, Jane Eliza. January 2005 (has links)
Thesis (Ph.D.)--University of Wollongong, 2005. / Typescript. Includes bibliographical references: leaf 239-252.
9

Creating and capturing value in the biopharmaceutical sector.

Rasmussen, Bruce. January 2008 (has links)
Thesis (Ph. D.)--Victoria University (Melbourne, Vic.), 2008. / Includes bibliographical references.
10

Potent short-chain fatty acid-based histone deacetylase inhibitors as anti-tumor agents

Lu, Qiang, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xix, 116 p.; also includes graphics. Includes bibliographical references (p. 106-116). Available online via OhioLINK's ETD Center

Page generated in 0.0682 seconds