• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 17
  • 12
  • 9
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 149
  • 122
  • 25
  • 20
  • 20
  • 18
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional and molecular characterisation of P-type Ca'2'+ channels in cerebellar Purkinje cells

Tringham, Elizabeth Wendy January 2001 (has links)
No description available.
2

Changes in the auditory middle latency response to propofol infusions

Gemal, Alberto Esteves January 1999 (has links)
No description available.
3

Patch clamp studies of the effects of anticonvulsants on glutamate and GABA release in the rat entorhinal cortex in vitro

Cunningham, Mark Oliver January 2001 (has links)
No description available.
4

Pharmacodynamics of theophylline in irreversible chronic airflow obstruction

Chrystyn, H. January 1987 (has links)
No description available.
5

The use of xenon as a sedative for patients receiving intensive care

Bedi, A. January 2001 (has links)
No description available.
6

Pharmacokinetic and pharmacodynamic studies on flaxseed lignans

2013 January 1900 (has links)
Natural Health Products (NHPs) are regulated and require safety and efficacy information for their approval into the Canadian market. Flaxseed lignans are NHPs with putative health benefits in a number of chronic diseases. In the flaxseed the principal lignan is secoisolariciresinol diglucoside (SDG). After oral consumption SDG is converted into its aglycone secoisolarisiresinol (SECO) and subsequently into mammalian lignans (enterodiol (ED) and enterolactone (EL)) in the presence of gastrointestinal microflora. In my Ph.D. research, I conducted a series of in vitro and in vivo PK studies to enable the design of prospective safety and efficacy studies of lignans. In vitro PK studies in the Caco-2 cell monolayer suggest that SDG has poor intestinal permeation and intestinal conjugation characteristics (glucuronidation and sulphation); however, SECO, ED and EL undergo passive permeation and extensive conjugation (SECO<ED<EL) by Caco-2 cells. Single oral and intravenous dose pharmacokinetics in male Wistar rats showed that these lignans exhibit high volumes of distribution, high systemic clearance values, and short half-lives. EL was fatal to the rats at the given intravenous and oral doses while SDG was not orally bioavailable and may not likely be the bioactive lignan form. I investigated the effect of acute SDG and chronic BeneFlax oral administration in blunting the postprandial hyperglycemia in healthy and streptozotocin induced male Wistar type II diabetic rats, respectively; however, my pilot study failed to show any change in postprandial blood glucose levels. Further, I conducted selective cytotoxicity evaluations in prostate and breast cancer cell lines. Only EL caused selective cytotoxicity of breast and prostate cancer cells with IC50 values that may be physiologically achievable. To elucidate the mechanism of action, I tested concentration and time dependent effects of EL on various enzymes and transcription factors of fatty acid metabolism at mRNA and protein levels in cancer (PC-3) and normal (RWPE-1) prostate cell lines. mRNA and protein expression analysis showed a concentration and time dependent inhibition of fatty acid synthase (FAS) and suggested that EL may inhibit FAS to show anti-proliferative effect on prostate cancer. The pharmacokinetic characteristics and pharmacodynamics properties of flaxseed lignans warrant their further investigation.
7

Practical aspects of pharmacokinetics and pharmacodynamics

Loadman, Paul 20 March 2015 (has links)
No
8

The pharmacodynamics of antifungal agents against Aspergillus

Jeans, Adam Rupert January 2013 (has links)
Background: Voriconazole is a first line agent for the treatment for invasive pulmonary aspergillosis. There are increasing reports of Aspergillus fumigatus isolates with reduced susceptibility to voriconazole. I investigated the pharmacodynamics of voriconazole against drug susceptible and drug resistant strains of Aspergillus fumigatus through the development of a novel dynamic in vitro model of the human alveolus. I then investigated whether combination therapy with voriconazole and anidulafungin would be beneficial in the treatment of infection with these isolates. Methods: An in vitro dynamic model of IPA was developed that enabled simulation of human-like voriconazole pharmacokinetics. Galactomannan was used as a biomarker. The pharmacodynamics of voriconazole against wild-type and three resistant strains of A. fumigatus were defined. The results were bridged to humans to provide decision support for setting breakpoints for voriconazole using Clinical Laboratory Standards Institute (CLSI) and European Committee of Antimicrobial Susceptibility Testing (EUCAST) methodology. The interaction of voriconazole and anidulafungin in an in vitro static model was described using the Greco model. Results: Isolates with higher MICs required higher area under the concentration time curve (AUCs) to achieve suppression of galactomannan. An AUC:MIC using CLSI and EUCAST methodology that achieved suppression of galactomannan was 55 and 32.1, respectively. A trough concentration:MIC using CLSI and EUCAST methodology that achieved suppression of galactomannan was 1.68 and 1, respectively. Potential CLSI breakpoints for voriconazole are: susceptible ≤ 0.5 mg/L; resistant > 1 mg/L. Potential EUCAST breakpoints for voriconazole are: susceptible ≤ 1 mg/L; resistant > 2 mg/L. Galactomannan concentrations were only marginally reduced by anidulafungin monotherapy in the static model. An additive effect between voriconazole and anidulafungin was apparent. Conclusions: Voriconazole resistance mechanisms can be overcome with higher drug exposures, but this may require concentrations likely to cause toxicity in humans. The addition of anidulafungin does not markedly alter the exposure-response relationship of voriconazole. A rise in serum galactomannan during combination therapy with voriconazole and anidulafungin should be interpreted as treatment failure and not attributed to a paradoxical reaction related to echinocandin treatment. The dynamic in vitro model is a useful tool to address many remaining questions related to treatment of invasive fungal infection.
9

Antimicrobial therapy in critically ill patients : improving clinical outcomes using a translational pharmacological approach

Felton, Timothy January 2014 (has links)
Pulmonary infections in critically ill patients are common, frequently lethal and treatment may be complicated by bacterial resistance. Piperacillin-tazobactam (PTZ) is a broad-spectrum β-lactam antibiotic, frequently used for pulmonary infections. Lung antibiotic concentration reflects target site concentrations in patients with pneumonia. Critically ill patient’s exhibit marked pharmacokinetic (PK) variability. PTZ exposures resulting in maximal bacterial killing and prevention of emergence of drug resistance are not known. Administration of PTZ by extended infusions (EI) or using Bayesian dosage optimisation, instead of a fixed bolus regimen, may improve clinical outcomes. Experimental work was conducted in an in vitro hollow fibre infection model (HFIM) using two densities of Pseudomonas aeruginosa. Experimental data was described by a mathematical model allowing identification of PTZ exposures associated with bacterial killing and suppression of the emergence of resistance. The population PK of PTZ in the plasma and lung of 17 critically ill patients was estimated. Monte Carlo simulation was used to explore the proportion of patients that achieve the plasma and lung PTZ exposures associated with bacterial killing and resistance suppression and to determine the effect of administration schedule. Finally, the population PK of PTZ in the plasma of 146 critically ill patients was estimated and used to construct computer software that can individualise PTZ dosing. Precision of the dosing software was assessed in 8 additional individuals. At low bacterial density a trough piperacillin:MIC ratio of 3.4 for bolus and 10.4 for EI regimens were able to suppress the emergence of resistance. At higher bacterial density all regimens were associated with growth of a resistant sub-population. Pulmonary piperacillin and tazobactam concentrations were unpredictable and negatively correlated to pulmonary permeability. Simulations revealed that EI, compared with bolus dosing, of PTZ is associated with a higher likelihood of bacteria killing. Similar probability of developing resistance was predicted with PTZ administration by EI and by bolus administration. Performance of the dose optimisation software was satisfactory. Current PTZ regimens are insufficient to treat pneumonia in approximately 14% of critically ill patients. Delivery of PTZ by EI may be a more effective method of administration for some patients with nosocomial infections. Individualised PTZ regimens, delivering a target piperacillin concentration, identified in a HFIM, are achievable and should improved clinical outcomes. Patients with a high bacterial burden may required alternative therapeutic strategies to maximize bacterial killing and prevent antimicrobial resistance.
10

Population pharmacokinetics and pharmacodynamics of pyronaridine

Methaneethorn, Janthima 01 July 2013 (has links)
Pyronaridine/Artesunate (PA) 3:1 fixed dose combination is a novel artemisinin-based combination therapy (ACT) in development for the treatment of acute uncomplicated Plasmodium falciparum or Plasmodium vivax malaria. An understanding of both pharmacokinetics and pharmacodynamics of pyronaridine is of importance in order to achieve optimal therapeutic outcome. In this thesis, population pharmacokinetic models for pyronaridine in healthy subjects, and adult and pediatric malaria patients were developed. Pyronaridine pharmacokinetics in both adult and pediatric populations were best described by a two compartment model with first order absorption and elimination from the central compartment. A presence of malaria infection and body weight were the significant covariates that explained pyronaridine pharmacokinetic variability in the adult population. For the pediatric population, age was the only significant covariate that explained pyronaridine pharmacokinetic variability. Monte Carlo simulations were also performed to address differences in pyronaridine exposures among these populations and to explore the exposures of pyronaridine among recommended dosage regimens for pediatric and adult malaria patients. Healthy adults had a higher exposure to pyronaridine as compared to adult malaria patients. For the pediatric population, younger children had a higher exposure to pyronaridine as compared to older children. The overall range of pyronaridine exposures among dosing groups for adult and pediatric malaria patients were relatively similar. The cut-off values of pyronaridine pharmacokinetic parameters associated with successful treatment outcome were also determined by means of receiver operating characteristic (ROC) curve. These cut-off values can be used to optimize the outcome of malaria treatment. Additionally, Cox proportional hazard model was conducted to determine the relationship between several covariates and time to the occurrence of re-infection or recrudescence. The models showed that as the levels of predicted pyronaridine concentrations on day 7 increased, the risks of acquiring re-infection or recrudescence decreased. Finally, pharmacokinetic drug-drug interaction of pyronaridine and ritonavir was assessed based on the overlap pathway for metabolism of both drugs and the high rates of HIV and malaria co-infection. There was an effect of ritonavir on pyronaridine pharmacokinetics. However, the results were not considered clinically relevant. An increase in ritonavir exposure was observed in the presence of fixed dose PA.

Page generated in 0.1603 seconds