Spelling suggestions: "subject:"pharmacy anda pharmaceutical ciences"" "subject:"pharmacy anda pharmaceutical csciences""
191 |
Population pharmacokinetics of pyronaridine in the treatment of malariaWattanavijitkul, Thitima 01 May 2010 (has links)
A novel pyronaridine-artesunate (PA) combination is being developed as a 3:1 fixed ratio oral combination against P. falciparum and P. vivax malaria. Pyronaridine (PYR) has been used on a limited basis as monotherapy to treat malaria in some provinces in China since 1970, and there are minimal published data on pharmacokinetics of PYR in humans.
In this thesis, the population pharmacokinetics (PPKs) of PYR is studied in different populations. In Chapter II, we develop a PPKs model in 91 healthy subjects participating in a Phase I study of PA. In addition, data from two Phase II and four Phase III studies of PA are pooled, and PPKs of PYR in 321 adult and 319 pediatric patients are investigated separately in Chapter III and IV, respectively. Chapter V provides comparisons of the results from each population.
PYR pharmacokinetics in each population is best described by a two-compartment model with first order absorption and elimination from the central compartment. Although the same structural model is used, pharmacokinetics of PYR differs among the three populations. PYR is absorbed faster and more variably in patients. The weight-normalized total apparent volumes of distribution (V/F) in adult and pediatric patients are approximately 5 and 3 times larger than in healthy subjects. Adult and pediatric patients have a mean weight-normalized oral clearance (CL/F) approximately 2 times higher than healthy subjects but the drug is eliminated more slowly in patient populations due to a much larger V/F. The average elimination half-lives are 8, 11 and 18 days in healthy, pediatric and adult patient populations, respectively. Pharmacokinetic modeling suggests that lean body weight is an important predictor of apparent central volume (V2/F) in adult patients while actual body weight is a significant covariate of V2/F and CL/F in children.
The parameters obtained from PPK modeling are plausible and estimated with acceptable precision. The final models are evaluated using a nonparametric bootstrap technique and visual predictive check. The final models are robust and adequately capture the overall pyronaridine pharmacokinetics. Further study in a broader patient population will be necessary to examine other covariates that influence pyronaridine pharmacokinetics.
|
192 |
Topical treatment of infantile hemangiomas: in vitro evaluation of novel beta-blocker formulations and in vivo characterization of lesional skinKelchen, Megan N. 01 January 2018 (has links)
Infantile hemangiomas (IHs), benign vascular lesions present on the surface of the skin of children, are treated with systemic or topical beta-adrenergic antagonists (known as “beta-blockers”). However, systemic beta-blocker therapy is associated with serious adverse events in pediatric patients, and there are currently no topical formulations optimized for the skin. The objectives of this work were to 1) evaluate the local skin concentrations and drug permeation through the skin using novel beta-blocker formulations, and 2) characterize the epidermal properties and skin surface inflammatory mediators of IH skin.
Skin concentrations and drug permeation through the skin from current topical treatment options were quantified in vitro; these data served as benchmarks to which other treatment paradigms in later studies were compared. Microneedle (MN)-mediated delivery of two beta-blockers, propranolol and timolol, was evaluated in vitro using solid MNs and two dissolving MN array formulations. Solid MNs increased skin concentrations of timolol compared to intact skin, while producing similar skin concentrations of propranolol. Drug permeation through the skin was increased for both drugs after MN pretreatment. Both formulations of dissolving MN arrays were ineffective at increasing local skin concentrations compared to intact skin. This was likely due to the small loading capacity of drug into the array.
Drug-loaded microemulsions (ME) of varying composition were formulated and characterized. All ME formulations had solubilization properties, and water rich MEs had the greatest cumulative release through a homogenous membrane compared to surfactant rich MEs. Drug-loaded MEs did not increase local skin concentrations in vitro compared to a drug solution; however, water rich ME formulations produced greater skin-to-receiver ratio of drug concentration, indicating their potential for skin accumulation. MN pretreatment increased the skin-to-receiver ratios for surfactant rich formulations but not for water rich formulations, indicating this enhancement in skin retention after MN pretreatment is formulation dependent. These results demonstrate the potential for topical treatment of IHs upon further optimization of delivery and formulation parameters.
The epidermal properties and skin surface mediators of IH skin were compared to normal, unaffected skin. Significant differences in barrier function and color, as well as chemokine and growth factor concentrations, were observed between the two sites. These results provide a greater understanding of the IH properties that have previously not been quantified. Similar changes in lesion color, which correlate to efficacy, were observed after beginning treatment with oral propranolol or topical timolol, while changes in barrier function were similar between the two treatment groups. These results indicate topical timolol may be a safe alternative for systemic treatment for superficial IHs without a loss of efficacy.
|
193 |
NM23-H1 BLOCKS CELL MOTILITY INDEPENDENTLY OF ITS KNOWN ENZYMATIC ACTIVITIES IN A COHORT OF HUMAN MELANOMA CELLSMcCorkle, Joseph Robert 01 January 2010 (has links)
The metastasis suppressor gene NM23-H1 has been shown to possess three enzymatic activities including nucleoside diphosphate kinase, histidine-dependent protein kinase and 3’-5’ exonuclease activity. While these properties have been demonstrated in vitro using recombinant proteins, the contribution of these activities to suppression of metastatic dissemination is unknown. Site-directed mutagenesis studies were used to identify amino acid residues which are required for proper function of each enzymatic activity associated with H1, providing a platform for studying the importance of each function on an individual basis. To assess the relevance of these activities to melanoma progression, a panel of mutants harboring selective lesions disrupting the enzymatic activities of H1 were overexpressed using stable transfection in two melanoma cell lines, WM793 (isolated from a vertical growth phase human melanoma), and the metastatic derivative cell line 1205LU. In vitro correlates of metastasis measuring motility and invasion were used in an attempt to identify the mechanism mediating H1-dependent motility suppression of cancer cells. Surprisingly, all mutants studied retained full motility suppression in this setting, suggesting that the enzymatic functions associated with H1 are not required for inhibiting cell migration. Instead, gene expression analyses conducted on the panel of stable transfectants indicate that differences in steady-state mRNA levels of genes involved in mitogen-activated protein kinase (MAPK) signaling showed significant correlations with H1 expression and motility suppression. RNAi studies have confirmed that H1-dependent modulation of the expression of two genes in particular, BRAP and IQGAP2, contribute to the observed phenotype, suggesting a novel mechanism used by NM23 to control cellular migration in human melanoma.
|
194 |
ISOLATION AND ELUCIDATION OF THE CHRYSOMYCIN BIOSYNTHETIC GENE CLUSTER AND ALTERING THE GLYCOSYLATION PATTERNS OF TETRACENOMYCINS AND MITHRAMYCIN-PATHWAY MOLECULESNybo, Stephen Eric 01 January 2011 (has links)
Natural products occupy a central role as the majority of currently used antibiotic and anticancer agents. Among these are type-II polyketide synthase (PKS)-derived molecules, or polyketides, which are produced by many representatives of the genus Streptomyces. Some type-II polyketides, such as the tetracyclines and the anthracycline doxorubicin, are currently employed as therapeutics. However, several polyketide molecules exhibit promising biological activity, but due to toxic side effects or solubility concerns, remain undeveloped as drugs.
Gilvocarcin V (GV) (topoisomerase II inhibitor) has a novel mechanism of action: [2+2] cycloaddition to thymine residues by the 8-vinyl side chain and cross-linking of histone H. Mithramycin blocks transcription of proto-oncogenes c-myc and c-src by forming an Mg2+-coordinated homodimer in the GC-rich minor groove of DNA. The purpose of this research was to investigate the biosynthesis of several type II polyketide compounds (e.g. chrysomycin, elloramycin, and mithramycin) with the goal of improving the bioactivities of these drugs through combinatorial biosynthesis. Alteration of the glycosylation pattern of these molecules is one promising way to improve or alter the bioactivities of these molecules. To this end, an understanding of the glycosyltransferases and post-polyketide tailoring enzymatic steps involved in these biosynthetic pathways must be established. Four specific aims were established to meet these goals.
In specific aim 1, the biosynthetic locus of chrysomycin A was successfully cloned and elucidated, which afforded novel biosynthetic tools. Chrysomycin monooxygenases were found to catalyze identical roles to their gilvocarcin counterparts. Cloning of deoxysugar constructs (plasmids) which could direct biosynthesis of ketosugars, NDP-D-virenose, and NDP-D-fucofuranose in foreign pathways was undertaken in specific aim 2. Finally, these “sugar” plasmids were introduced into producer organisms of elloramycin and mithramycin pathways in specific aims 3 and 4 to interrogate the endogenous glycosyltransferases in order to alter their glycosylation patterns. These experiments resulted in the successful generation of a newly glycosylated tetracenomycin, as well as premithramycin, and mithramycin analogues. In specific aim 4, a new mithramycin analogue with an altered sugar pattern rationally designed and improved structural features was generated and structurally elucidated.
|
195 |
Synthesis and Biological Evaluation of Novel Resveratrol and Combretastatin A4 Derivatives as Potent Anti-Cancer AgentsMadadi, Nikhil Reddy 01 January 2014 (has links)
Resveratrol has been reported as a potential anticancer agent but cannot be used as an antitumor drug due to its chemical and metabolic instability. We have designed and synthesized 184 novel compounds related to resveratrol in an attempt to produce more potent and drug-like molecules. We have identified a tetrazole analog of resveratrol, ST-145(a) as a lead anticancer agent from the resveratrol analog series of compounds with a GI50 value of less than 10nM against almost all the human cancer cell lines in the National Cancer Institute’s screening panel.
In a separate study, we tested the hypothesis that the limited bioavailability of resveratrol, can be improved by synthesizing analogs which would be glucuronidated at a lower rate than resveratrol itself. We demonstrated that ST-05 and ST-12(a) exhibit lower glucuronidation profiles when compared to resveratrol and that these synthesized stilbenoids likely represent useful scaffolds for the design of efficacious resveratrol analogs.
We have also initiated a new discovery program to identify selective CB1 and CB2 receptor ligands from a library of novel stilbene scaffolds structurally related to the resveratrol molecule. From the screened resveratrol analogs, two compounds were identified as selective CB2 and CB1 ligands. Compound ST-179 had 47-fold selectivity for CB2 (Ki = 284 nM) compared to CB1, while compound ST-160 was 2-fold selective for CB1 (Ki = 400 nM) compared to the CB2 receptor. These structural analogs have the potential for development as novel cannabinoid therapeutics for treatment of obesity and/or drug dependency.
Combretastatin A4 (CA-4) is one of the most potent antiangiogenic and antimitotic agents of natural origin. However, CA-4 suffers from chemical instability due to cis-trans isomerism in solution. To circumvent this problem, we have developed a facile procedure for the synthesis of novel 4,5-diaryl-2H-1,2,3-triazoles as CA-4 analogs to constrain the molecule to its cis-configuration. Twenty three triazoles were prepared as CA-4 analogs and submitted for anticancer screening. Among these CA-4 analogs, ST-467 and ST-145(b) can be considered as lead anticancer agents from this series, and further investigation against various cancer cell types in vivo with this class of compound may provide novel therapeutic avenues for treatment.
|
196 |
DRUG RELEASE AND PHARMACOKINETIC PROPERTIES OF LIPOSOMAL DB-67Liang, Yali 01 January 2010 (has links)
Sterically stabilized liposomes with saturated lipid as the major lipid component (DSPC:m-PEGDSPE were applied in DB-67 delivery. The drug retention in vitro and pharmacokinetic properties in vivo were investigated. Liposomal DB-67 was cleared faster from the circulation in the larger liposomes (~180 nm) than in the smaller ones (~120 nm), even though DB-67 was retained longer in smaller size liposomes in vitro. Liposomal DB-67 clearance was increased when cholesterol was present in the liposomal composition (40 mole %). It can be attributable to the faster drug release from cholesterol containing liposomes as compared to liposomes without cholesterol. Cholesterol free liposomes with smaller particle size (~120 nm) were chosen as the optimal formulation. In addition, high lipid doses led to the lower clearance of liposomal DB-67 because the liposomal carriers were retained in the circulation longer. Liposomes of larger particle size were taken up by the liver and spleen to a greater extent than the smaller ones. But cholesterol content and lipid dose did not alter the tissue uptake of liposomes. The area under the DB-67 plasma concentration-time curve (AUC) for liposomal DB-67 was 40-fold higher that for non-liposomal DB-67.
|
197 |
THE INFLUENCE OF ANTIDIABETIC MEDICATIONS ON THE DEVELOPMENT AND PROGRESSION OF PROSTATE CANCERHitron, Anna Elizabeth 01 January 2011 (has links)
The development of prostate tumors has been linked to co-morbid diabetes mellitus (DM) in several studies, potentially through the stimulation of insulin-like growth factor receptor (IGFR). This study evaluates the effect of anti-diabetic medication use on the development of high grade tumors and time to tumor progression compared to non-diabetics. This retrospective, nested case control study identified patients with prostate cancer (PCa) from the Kentucky Medicaid Database. Cases were diagnosed with PCa and DM and using at least one of the following antidiabetic medications; sulfonylureas, insulin, metformin or TZDs. Cases were further stratified on their insulin exposure resulting from therapy. Controls were those with PCa without DM or any anti-diabetic medications. No statistically significant effects on insulin exposure was found on tumor grade and time to progression. Trends identified that use of metformin or TZDs potentially decreased the odds of high-grade tumors and decreased the risk of progression, while sulfonylureas and high-dose insulin may increase the odds of high-grade tumors and increase the risk of progression compared to non-diabetics. Future studies should be conducted to further evaluate the effects of anti-diabetic medications on tumor grade and time to prostate cancer progression.
|
198 |
Ortho substitution effects on the acidic and alkaline hydrolyses of formanilidesDesai, Salil Dileep 01 December 2009 (has links)
The objectives of this project were to determine the reaction schemes of formanilide and substituted formanilides in acidic and alkaline solutions, to quantiate the kinetics of hydrolysis, to propose reaction mechanisms, and to assess the role of ortho words substitution in formanilide hydrolysis kinetics.
A set of thirty substituted formanilides were synthesized and characterized. Hydrolysis of the formanilides was carried out under first order conditions in hydrochloric acid (0.01-8 M, 40°C) and in hydroxide solutions (0.01-3 M, 25°C and 40°C). Hydrolysis kinetics were evaluated in terms of temperature (20°C- 60°C), solvent composition (0-50 % dimethyl sulfoxide, dioxane, ethanol and acetone) and ionic strength (0.1-1) effects. The degradation products were separated and identified using RP-HPLC, and the alkaline and acidic reaction schemes were proposed.
For acidic hydrolysis of formanilides, the observed rate constants were proportional to the hydronium concentrations. Modified Hammett plots constructed using the second order rate constants for specific acid catalysis were linear. The ortho effect was analyzed using the Fujita-Nishioka method. In alkaline solutions the observed rate constants showed mixed first and second order dependences with respect to hydroxide concentration. A complex degradation scheme was used to estimate individual rate constants and to construct Hammett plots. Ortho effects were examined for the first order hydroxide concentration dependent pathway.
Arrhenius plots for substituted formanilides were linear in both acidic and alkaline media. Ionic strength did not show any effect on the acidic and alkaline hydrolysis rates. In both acidic and alkaline media the rate of hydrolysis decreased with increase in organic solvent content.
Formanilide hydrolyzes in acidic solutions by specific acid catalysis and the kinetic study results were consistent with AAC2 mechanism. Ortho substitution led to reduction in rates. The orthoeffect could be split in steric inhibition of resonance, retardation due to steric bulk and through space interactions. In alkaline solutions a complicated kinetic scheme was used to describe the multiple pathways of degradation. The results from the kinetic studies could be explained using a modified BAC2 mechanism. The hydrolysis of meta and parasubstituted formanilides in alkaline conditions did not show substituent effects however ortho substitution led to an decrease in rate constants proportional to the steric bulk of the substituent.
|
199 |
Development of a model of the Pharmacy and Therapeutics Committee to predict the level of prescriber adoption of its' decisionsAndreski, Michael Thomas 01 December 2009 (has links)
Pharmacy and Therapeutics (P&T) Committees manage programs that provide patients with effective, safe, and financially sound medication treatments. Despite their importance, little research exists into what committee characteristics lead to adoption of its decisions by prescribers. Considered as "teams", research from the management literature and a qualitative study identified a theoretical model of P&T Committee performance that includes five concepts and a set of four outcome measures. The study aims were to: (1) Describe the variance in P&T Committee functioning and performance in the United States, (2) Quantify drivers of performance within the P&T Committee Performance model and (3) Quantify the relationships between concepts in the P&T Committee model and the effects of these relationships on P&T Committee performance.
An on-line and mail cross-sectional survey was sent to 321 Pharmacy Directors, Hospital Administrators/Medical Staff Directors and P&T Committee Chairs at non-university non-specialty hospitals with an ASHP residency. Previously validated measures were used for two concepts, and newly created measures for three concepts. Four dependent variables were used: adoption of formulary medications, medication restrictions, Community-Acquired Pneumonia (CAP) treatment and Deep Vein Thrombosis (DVT) risk assessment protocols. Multivariate regression and path analysis were used with the dependent variables, with five primary variables of interest and five control variables.
The response rate was 17.76%. P&T Committee developed processes are successful in leading prescribers to adopting formulary medication decisions (96.02 ± 3.94%), with no differences based on hospital characteristics. They have not been as successful in developing processes for adoption of decisions on medication restrictions (77.02 ± 28.81%) and protocols (63.02 ± 32.76%, 73.02 ± 29.96%). Engaged team members were important in the adoption of all four studied P&T Committee decisions. Influential physicians and implementation activities varied in their importance depending on the decision being made. The presence of influential physicians on the P&T Committee appeared to facilitate both implementation activities and engagement of team members. Influences outside of the committee were insignificant as predictors of decision adoption, possibly an indicator of successful efforts mitigating their influence. This research begins to address previous research gaps about factors affecting adoption of P&T Committee decisions.
|
200 |
The Effects of Conformation and Aggregation on the Pharmaceutical Chemistry Properties of Lipopeptide (Daptomycin)Qiu, Jiang 01 July 2013 (has links)
The objectives of this research were to identify the individual ionization constants (pKa values) of lipopeptide (daptomycin), evaluate the factors of pH, concentration, temperature, and calcium ions on daptomycin aggregation in aqueous solutions, and elucidate the effects of conformation and aggregation on ionization and the interaction mechanism between polyamidoamine (PAMAM) dendrimers and daptomycin.
Daptomycin is a cyclic anionic lipopeptide antibiotic. It is composed of 13 amino acids with six ionizable groups, four side-chain carboxylic acids and two side-chain amine residues. The pKa values for individual daptomycin residues have not been elucidated. The sequence-specific pKa values for the four acidic residues and one aromatic amine (Kyn-13) in daptomycin were determined in the monomeric state by TOCSY 2D 1H NMR. From the NMR pH titration, the estimated pKa values for Asp-3, Asp-9, and mGlu-12 were determined to be 4.15, 3.85, and 4.55 in the absence of salt, and 4.07, 3.83, and 4.39 in the presence of 150 mM NaCl, respectively. The pKa value for Asp-7 is estimated to be ~1.01 in the absence of salt and 1.31 in the presence of salt. The estimated Hill coefficients for Asp-7 were 0.72 and 1.31 in the absence and presence of salt, respectively. The increase in Hill coefficients from 0.72 to 1.31 with increasing salt concentration is consistent with the estimated lower pKa in the absence of salt and suggests that a salt bridge is formed in solution possibly between Asp-7 acidic group and the neighboring Orn-6 basic group. The pKa value of the aromatic amine (Kyn-13) was confirmed using UV and fluorescence spectroscopic titrations.
Aggregation behavior and critical aggregation concentration (CAC) values of daptomycin were evaluated in the different pH aqueous solutions by using the complementary analytical techniques, fluorescence, dynamic and static light scattering, and NMR spectroscopy. Based on fluorescence resonance energy transfer (FRET) from donor Trp-1 to acceptor Kyn-13, the CAC values were determined by an upward inflection of the intrinsic fluorescence emission from Kyn-13 at 460 nm as a function of increasing daptomycin concentration. The pH-dependent CAC values were determined to be 0.14 mM at pH 3.0, 0.12 mM 4.0, and 0.20 mM at pH 2.5 and 5.0. The CAC values obtained by fluorescence spectroscopy were confirmed by dynamic light scattering and NMR spectroscopy. The effects of temperature and calcium ion on daptomycin aggregation were also discussed.
The interaction mechanism between daptomycin and PAMAM dendrimers generation 5 and 6 was studied using fluorescence spectroscopy. The shapes of binding isotherms daptomycin were quantitatively described by one- and two-site binding models to estimate binding capacity and dissociation constants. Both solvent pH values and PAMAM generation size were shown to affect the binding model and parameters. The interaction between daptomycin and PAMAM dendrimer was proposed wherein the ionized Asp-3 and Asp-9 residues of daptomycin interact with PAMAM cationic surface amine.
|
Page generated in 0.4646 seconds