• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scaling of effervescent atomization and industrial two-phase flow

Rahman, Mohammad Unknown Date
No description available.
2

Scaling of effervescent atomization and industrial two-phase flow

Rahman, Mohammad 06 1900 (has links)
The objective of this thesis was to develop a novel understanding of the mechanics of two phase gas-liquid flows and sprays injected through industrial effervescent nozzles. This was done using detailed experimental investigations and scaling for two-phase flows and sprays. This study helps to quantify near-field liquid and gas phase statistics that are challenging and impossible to measure in the reactors due to inaccessibility restrictions. The development of nozzles is generally performed on air-water systems. My plan was to begin with the study of small-scale sprays (air and water) to compare to full scale industrial conditions at pilot operation (air-water) or at commercial operation (steam-bitumen), to determine size scaling relationships. The relationship between the lab scale air-water experiments and real industrial scale steam-bitumen has never been fully examined. Knowledge from this thesis will make the development of future nozzles with much less dependent on trial and error. This thesis was an attempt to establish fundamental scaling relationships for the prediction of two-phase spray behavior that can be applied directly to full scale industrial size nozzles that would be of very significant value to industries and to the scientific community in general. Understanding the performance of two phase nozzles through established scaling laws will aid in optimizing the two phase nozzle flow conditions and will serve as a major tool in nozzle design and development for future generation nozzles for many industrial applications.

Page generated in 0.0916 seconds