• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 16
  • 8
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 106
  • 106
  • 28
  • 23
  • 21
  • 19
  • 18
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Geometric Approaches in Phase Space Transport and Partial Control of Escaping Dynamics

Naik, Shibabrat 01 November 2016 (has links)
This dissertation presents geometric approaches of understanding chaotic transport in phase space that is fundamental across many disciplines in physical sciences and engineering. This approach is based on analyzing phase space transport using boundaries and regions inside these boundaries in presence of perturbation. We present a geometric view of defining such boundaries and study the transport that occurs by crossing such phase space structures. The structure in two dimensional non-autonomous system is the codimension 1 stable and unstable manifolds associated with the hyperbolic fixed points. The manifolds separate regions with varied dynamical fates and their time evolution encodes how the initial conditions in a given region of phase space get transported to other regions. In the context of four dimensional autonomous systems, the corresponding structure is the stable and unstable manifolds of unstable periodic orbits which reside in the bottlenecks of energy surface. The total energy and the cylindrical (or tube) manifolds form the necessary and sufficient condition for global transport between regions of phase space. Furthermore, we adopt the geometric view to define escaping zones for avoiding transition/escape from a potential well using partial control. In this approach, the objective is two fold: finding the minimum control that is required for avoiding escape and obtaining discrete representation called disturbance of continuous noise that is present in physical sciences and engineering. In the former scenario, along with avoiding escape, the control is constrained to be smaller than the disturbance so that it can not exactly cancel out the disturbances. / Ph. D. / The prediction and control of critical events in engineering systems has been a major objective of scientific research in recent years. The multifaceted problems facing the modern society includes critical events such as spread of pathogens and pollutants in atmosphere and ocean, capsize of boats and cruise ships, space exploration and asteroid collision, to name but a few. Although, at first glance they seem to be disconnected problems in different areas of engineering and science, however, they have certain features that are inherently common. This can be studied using the abstraction of phase space which can be thought of as the universe where all possible solutions of the governing equations, derived using principles of physics, live and evolve in time. The <i>phase space</i> can be just 2D, 3D or even infinite dimensional but the critical events manifest themselves as volumes of phase space, which represent solutions at a given instant of time, get transported from one region to another due to the underlying dynamics. This mathematical abstraction is called phase space transport and studied under the umbrella of dynamical systems theory. The geometric view of the solutions that live in the phase space provides insight into the mechanisms of how the critical events occur, and the understanding of these mechanisms is useful in deciding about control strategies. A slightly different view for understanding critical events is to consider a thought experiment where a ball is rolling on a multi-well surface or potential well. As the time evolves, the ball will escape from its initial well and roll into another well, and eventually start exploring all the wells in a seemingly unpredictable way. However, these unpredictable escape/transition can be studied systematically using methods of chaos and dynamical systems. The escape/transition in a potential well implies a dramatic change in the behavior of the system, and hence the significance in prediction and control of <i>escaping dynamics</i>. The control aspect becomes more challenging due to inherent disturbance in the system that is difficult to model and we may not have the equal or more control authority to cancel those disturbances. However, we can usually estimate the maximum values of the disturbance, and try to avoid escaping from the potential well while using a smaller control. This idea is called <i>partial control of escaping dynamics</i> and can guarantee avoidance of escape for <i>ad infinitum</i>. In this doctoral research, we focus on the two mechanisms, phase space transport and escaping dynamics, by considering problems from fluid dynamics and capsize of a ship. The applications are used for numerical demonstration and evidence of the general approach in studying a large class of problems in classical physics.
22

Interpolation between phase space quantities with bifractional displacement operators

Agyo, Sanfo D., Lei, Ci, Vourdas, Apostolos 18 November 2014 (has links)
No / Bifractional displacement operators, are introduced by performing two fractional Fourier transforms on displacement operators. They are shown to be special cases of elements of the group G , that contains both displacements and squeezing transformations. Acting with them on the vacuum we get various classes of coherent states, which we call bifractional coherent states. They are special classes of squeezed states which can be used for interpolation between various quantities in phase space methods. Using them we introduce bifractional Wigner functions A(α,β;θα,θβ)A(α,β;θα,θβ), which are a two-dimensional continuum of functions, and reduce to Wigner and Weyl functions in special cases. We also introduce bifractional Q-functions, and bifractional P-functions. The physical meaning of these quantities is discussed.
23

Superposição assimétrica de estados coerentes circulares

Maia, Luciano Paulo de Araújo January 2002 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-01T15:13:17Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Disseertacao Luciano Paulo de Araujo Maia.pdf: 1329124 bytes, checksum: b9e2abb00156f6dd57d05cd14dbacbb1 (MD5) / Made available in DSpace on 2014-08-01T15:13:17Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Disseertacao Luciano Paulo de Araujo Maia.pdf: 1329124 bytes, checksum: b9e2abb00156f6dd57d05cd14dbacbb1 (MD5) Previous issue date: 2002 / In this paper we present a new quantum state of light, obtained from an asymmetric superposition of coherent states in circular stationary mode. The generation of this state was proposed and the experimental apparatus required is presented. General expressions describing various properties (statistical distribution, variances, atomic inversion, etc..) Were obtained for arbitrary generations. We observed how they behave their properties by varying the phase between the components of superpo- sition states. We show that the statistical properties do not fully characterize the resulting state, showing different states with the same statistics. Alternative ways to distinguish these states were considered. Based on quantum interference in phase space, we show how we can generate an approximation of the number state N2 thru a process called "quantum sculpture,"and check the influence of the stage in this process. Finally, we measured the classicalidade not analyze this state and its representation in phase space. / Neste trabalho, apresentamos um novo estado quântico da luz, obtido de uma su- perposição assimétrica de estados coerentes circulares no modo estacionário. A ger- ação deste estado foi proposta e o aparato experimental necessário é apresentado. Expressões gerais descrevendo diversas propriedades (distribuição estatística, vari- anças, inversão atômica, etc.) foram obtidas para arbitrárias gerações. Verificamos como se comportam suas propriedades, variando a fase entre os estados componentes da superposição. Mostramos que as propriedades estatísticas não caracterizam com- pletamente o estado resultante, exibindo estados distintos com mesma estatística. Formas alternativas para distinguir estes estados foram consideradas. Baseado na interferência quântica no espaço de fase, mostramos como podemos gerar uma aprox- imação ao estado de número N2 , atravéz de um processo denominado “escultura quântica” e verificamos a influência da fase neste processo. Finalmente, medimos a não classicalidade deste estado e analisamos a sua representação no espaço de fase.
24

Utility Of Phase Space Behaviour In Solving Two Point Boundary Value Problems

Sai V, V V Sesha 08 1900 (has links) (PDF)
No description available.
25

Second order semiclassical theory of Bloch electrons in uniform electromagnetic fields

Gao, Yang 1987- 07 November 2014 (has links)
Berry curvature appears in the semi-classical theory of Bloch electrons already to first order in electromagnetic fields, resulting in profound modification of the carrier velocity and phase space density of states. Here we derive the equations of motion for the physical position and crystal momentum to second order in the fields. The dynamics still has a Hamiltonian structure, albeit with noncanonical Poisson brackets between the physical variables. We are able to expand both the carrier energy and the Poisson brackets to second order in the fields with terms of clear physical meaning. To demonstrate the utility of our theory, we obtain with much ease the electromagnetic response and orbital magnetic susceptibility. / text
26

Measuring the Mass of a Galaxy: An evaluation of the performance of Bayesian mass estimates using statistical simulation

Eadie, Gwendolyn 27 March 2013 (has links)
This research uses a Bayesian approach to study the biases that may occur when kinematic data is used to estimate the mass of a galaxy. Data is simulated from the Hernquist (1990) distribution functions (DFs) for velocity dispersions of the isotropic, constant anisotropic, and anisotropic Osipkov (1979) and Merritt (1985) type, and then analysed using the isotropic Hernquist model. Biases are explored when i) the model and data come from the same DF, ii) the model and data come from the same DF but tangential velocities are unknown, iii) the model and data come from different DFs, and iv) the model and data come from different DFs and the tangential velocities are unknown. Mock observations are also created from the Gauthier (2006) simulations and analysed with the isotropic Hernquist model. No bias was found in situation (i), a slight positive bias was found in (ii), a negative bias was found in (iii), and a large positive bias was found in (iv). The mass estimate of the Gauthier system when tangential velocities were unknown was nearly correct, but the mass profile was not described well by the isotropic Hernquist model. When the Gauthier data was analysed with the tangential velocities, the mass of the system was overestimated. The code created for the research runs three parallel Markov Chains for each data set, uses the Gelman-Rubin statistic to assess convergence, and combines the converged chains into a single sample of the posterior distribution for each data set. The code also includes two ways to deal with nuisance parameters. One is to marginalize over the nuisance parameter at every step in the chain, and the other is to sample the nuisance parameters using a hybrid-Gibbs sampler. When tangential velocities, v(t), are unobserved in the analyses above, they are sampled as nuisance parameters in the Markov Chain. The v(t) estimates from the Markov chains did a poor job of estimating the true tangential velocities. However, the posterior samples of v(t) proved to be useful, as the estimates of the tangential velocities helped explain the biases discovered in situations (i)-(iv) above. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2013-03-26 17:23:14.643
27

"Simulações computacionais biologicamente plausíveis de neurônios do córtex somestésico primário" / "Computational simulations biologically plausible of neurons of the primary somatosensory cortex"

Condeles Júnior, Rubens Antonio 06 April 2006 (has links)
Desde que surgiu, o computador vem sendo utilizado na modelagem de fenômenos em todas as áreas do conhecimento. Em neurociências, a modelagem computacional é utilizada para descrever, reproduzir e fazer previsões sobre o comportamento dos diferentes componentes do sistema nervoso. Assim como em outras áreas das ciências, este procedimento tem-se mostrado eficiente no estudo e aprimoramento das teorias a respeito da função cerebral. Com o crescente aumento do poder computacional, maiores e mais detalhados modelos podem ser construídos com um grau de realismo biológico cada vez maior. Neste trabalho, apresentamos modelos computacionais biologicamente plausíveis de neurônios corticais do sistema somestésico primário. Os modelos foram construídos com base no formalismo de Hodgkin-Huxley para a implementação de canais iônicos e na técnica de compartimentalização de Rall para modelar sua extensão espacial. Os parâmetros foram ajustados a partir de resultados experimentais 'in vivo' e 'in vitro' com neurônios, retirados da literatura. Os resultados das simulações mostraram que os modelos são biologicamente aceitáveis e de qualidade superior a de outros modelos construídos anteriormente, possibilitando a construção de modelos de redes neuronais em larga escala mais precisos. / Since its appearance, the computer has been used to model phenomena in all areas of knowledge. In neuroscience, computer modeling is used to describe, reproduce and predict behaviors of different components of the nervous system. As well as in other areas of sciences, this procedure has been shown to be efficient in the study and improvement of theories on brain function. With the increasing power of computers, larger and more detailed models can be constructed with an increasing degree of biological realism. In this work, we present biologically plausible computer models of cortical neurons from the primary somatosensory system. The models have been implemented based on the Hodgkin-Huxley formalism for ionic channels and the Rall´s compartmental technique for spatial extent. The parametrs have been adjusted based on in vivo and in vitro experimental results taken from the literature. Simulation results have shown that the models are biologically acceptable and of superior quality in comparison with previous models, allowing the construction of more precise large-scale neuronal network models.
28

Time-Reversible Maxwell's Demon

Skordos, P. A. 01 September 1992 (has links)
A time-reversible Maxwell's demon is demonstrated which creates a density difference between two chambers initialized to have equal density. The density difference is estimated theoretically and confirmed by computer simulations. It is found that the reversible Maxwell's demon compresses phase space volume even though its dynamics are time reversible. The significance of phase space volume compression in operating a microscopic heat engine is also discussed.
29

Phase Space Reconstruction using the frequency domain : a generalization of actual methods

Dietrich, Jan Philipp January 2008 (has links)
Phase Space Reconstruction is a method that allows to reconstruct the phase space of a system using only an one dimensional time series as input. It can be used for calculating Lyapunov-exponents and detecting chaos. It helps to understand complex dynamics and their behavior. And it can reproduce datasets which were not measured. There are many different methods which produce correct reconstructions such as time-delay, Hilbert-transformation, derivation and integration. The most used one is time-delay but all methods have special properties which are useful in different situations. Hence, every reconstruction method has some situations where it is the best choice. Looking at all these different methods the questions are: Why can all these different looking methods be used for the same purpose? Is there any connection between all these functions? The answer is found in the frequency domain : Performing a Fourier transformation all these methods getting a similar shape: Every presented reconstruction method can be described as a multiplication in the frequency domain with a frequency-depending reconstruction function. This structure is also known as a filter. From this point of view every reconstructed dimension can be seen as a filtered version of the measured time series. It contains the original data but applies just a new focus: Some parts are amplified and other parts are reduced. Furthermore I show, that not every function can be used for reconstruction. In the thesis three characteristics are identified, which are mandatory for the reconstruction function. Under consideration of these restrictions one gets a whole bunch of new reconstruction functions. So it is possible to reduce noise within the reconstruction process itself or to use some advantages of already known reconstructions methods while suppressing unwanted characteristics of it. / Attraktorrekonstruktion („Phase Space Reconstruction“) ist eine Technik, die es ermöglicht, aus einer einzelnen Zeitreihe den vollständigen Phasenraum eines Systems zu rekonstruieren und somit Rückschlüsse auf topologische Eigenschaften dieses dynamischen Systems zu ziehen. Sie findet Verwendung in der Bestimmung von Lyapunov-Exponenten und zur Reproduktion von unbeobachteten Systemgrößen. Es gibt viele verschiedene Methoden zur Attraktorrekonstruktion wie z.B. die Time-Delay-Methode or Rekonstruktion durch Ableitung, Integration oder mithilfe einer Hilbert-Transformation. Zumeist wird der Time-Delay-Ansatz verwendet, es gibt jedoch auch diverse Problemstellungen, in welchen die alternativen Methoden bessere Ergebnisse liefern. Die Kernfragen, die beim Vergleich dieser Methoden entsteht, sind: Wie kommt es, dass alle Ansätze, trotz ihrer teilweise sehr unterschiedlichen Struktur, denselben Zweck erfüllen? Gibt es Übereinstimmungen zwischen all diesen Methoden? Die Antwort lässt sich im Frequenzraum finden: Nach einer Fourier-Transformation besitzen alle genannten Methoden plötzlich eine sehr ähnliche Struktur. Jede Methode transformiert sich im Frequenzraum zu einer einfachen Multiplikation des Eingangssignals mit einer frequenzabhängigen Rekonstruktionsfunktion. Diese Struktur ist in der Datenanalyse auch bekannt als Filter. Aus dieser Perspektive lässt sich jede Rekonstruktionsdimension als gefilterte Zeitreihe der ursprünglichen Zeitreihe interpretieren: Sie enthält den Originaldatensatz, allerdings mit einem verschobenen Fokus: Einige Eigenschaften der Originalzeitreihe werden unterdrückt, während andere Teile verstärkt wiedergegeben werden. Des weiteren zeige ich in der Diplomarbeit, dass nicht jede beliebige Funktion im Frequenzraum zur Rekonstruktion verwendet werden kann. Ich stelle drei Eigenschaften vor, welche jede Rekonstruktionsfunktion erfüllen muss. Unter Beachtung dieser Bedingungen ergeben sich nun diverse Möglichkeiten für neue Rekonstruktionsfunktionen. So ist es z.B. möglich gleichzeitig mit der Rekonstruktion das Ursprungssignal auch zu filtern, oder man kann bereits bestehende Rekonstruktionsfunktionen so abwandeln, dass unerwünschte Nebeneffekte der Rekonstruktion abgemildert oder gar ganz unterdrückt werden.
30

Pulse and hold switching current readout of superconducting quantum circuits

Walter, Jochen January 2006 (has links)
Josephson junction qubits are promising candidates for a scalable quantum processor. Such qubits are commonly manipulated by means of sequences of rf-pulses and different methods are used to determine their quantum state. The readout should be able to distinguish the two qubit states with high accuracy and be faster than the relaxation time of the qubit. We discuss and experiment with a readout method based on the switching of a Josephson junction from the zero voltage state to a finite voltage state. The Josephson junction circuit has a non-linear dynamics and when it is brought to a bifurcation point, it can be made arbitrarily sensitive to small perturbations. This extreme sensitivity at a bifurcation point can be used to distinguish the two quantum states if the topology of the phase space of the circuit leads to a quick separation into the final states where re-crossings of the bifurcation point are negligible. We optimize a switching current detector by analyzing the phase space of a Josephson junction circuit with frequency dependent damping. A pulse and hold technique is used where an initial current pulse brings the junction close to its bifurcation point and the subsequent hold level is used to give the circuit enough time to evolve until the two states can be distinguished by the measuring instrument. We generate the pulse and hold waveform by a new technique where a voltage step with following linear voltage rise is applied to a bias capacitor. The frequency dependent damping is realized by an on-chip RC-environment fabricated with optical lithography. Josephson junction circuits are added on by means of e-beam lithography. Measurements show that switching currents can be detected with pulses as short as 5 ns and a resolution of 2.5% for a sample directly connected to the measurement leads of the cryostat. Detailed analysis of the switching currents in the RC-environment show that pulses with a duration of 20 us can be explained by a generalization of Kramers' escape theory, whereas switching the same sample with 25 ns pulses occurs out of thermal equilibrium, with sensitivity and speed adequate for qubit readout. / QC 20100924

Page generated in 0.0259 seconds