Spelling suggestions: "subject:"phase space (istatistical fhysics)"" "subject:"phase space (istatistical ephysics)""
11 |
Dinâmica de sistemas bipartites de spins no espaço de fase quântico discretoDebarba, Tiago [UNESP] 22 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:15Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-02-22Bitstream added on 2014-06-13T20:08:21Z : No. of bitstreams: 1
debarba_t_me_ift.pdf: 382014 bytes, checksum: 4afa66c6a4a88da9339ed53d43aa49c9 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Quando temos sistemas quânticos sem análogo clássico a descrição de Weyl- Wigner, para o espaço de fase quântico, não pode ser utilizada, pois a mesma não representa graus de liberdade associados a grandezas discretas. Um exemplo desses sistemas são os estados emaranhados bipartites de spin 1/2. Para tal, se faz necessária a descrição de um espaço de fase quântico discreto e de dimensão finita. Nessa descrição é possível se obter a caracterização do emaranhamento, bem como quantificar o grau dessas correlações entre os sub sistemas; além do que, há a possibilidade de calcular a evolução temporal nessa descrição, tanto para o sistema como um todo quanto para o emaranhamento / For quantum systems without classical analog the Weyl-Wigner description associated to quantum phase space can not be used, since it does not represent degrees of freedom associated with discrete quantities. An example of these systems are spin 1/2 bipartite entangled states. For them, it is needed a discrete quantum phase space description which have nite dimension. In this description, it is possible to obtain entanglement characterization, and to quantify the correlation degree between the subsystems; there is also the possibility of calculating the time evolution, in this description, both for the system as a whole as well as for the entanglement
|
12 |
Investigating multiphoton phenomena using nonlinear dynamicsHuang, Shu 20 March 2008 (has links)
Many seemingly simple systems can display extraordinarily complex dynamics which has been studied and uncovered through nonlinear dynamical theory. The leitmotif of this thesis is changing phase-space structures and their (linear or nonlinear) stabilities by adding control functions
(which act on the system as external perturbations) to the relevant Hamiltonians. These phase-space structures may be periodic orbits, invariant tori or their stable and unstable manifolds. One-electron systems and diatomic molecules are fundamental and important staging ground for new discoveries in nonlinear dynamics. In past years, increasing emphasis and effort has been put on the control or manipulation of these systems. Recent developments of nonlinear dynamical tools can
provide efficient ways of doing so. In the first
subtopic of the thesis, we are adding a control function to restore tori at prescribed locations in phase space. In the remainder of the
thesis, a control function with parameters is used to change the linear stability of the periodic orbits which govern the processes in question.
In this thesis, we report our theoretical analyses on multiphoton ionization of Rydberg atoms exposed to strong microwave fields and
the dissociation of diatomic molecules exposed to bichromatic lasers using nonlinear dynamical tools. This thesis is composed of three subtopics. In the first subtopic, we employ
local control theory to reduce the stochastic ionization of hydrogen atom in a strong microwave field by adding a relatively small control term to the original Hamiltonian. In the second subtopic, we perform periodic orbit analysis to investigate multiphoton ionization driven by a
bichromatic microwave field. Our results show quantitative and qualitative agreement with previous studies, and hence identify the mechanism through which short periodic orbits organize the dynamics in multiphoton ionization. In addition, we achieve substantial time
savings with this approach. In the third subtopic we extend our periodic orbit analysis to the dissociation of diatomic molecules driven
by a bichromatic laser. In this problem, our results based on periodic orbit analysis again show good agreement with previous work, and hence promise more potential applications of this
approach in molecular physics.
|
13 |
Utility Of Phase Space Behaviour In Solving Two Point Boundary Value ProblemsSai V, V V Sesha 08 1900 (has links) (PDF)
No description available.
|
14 |
Quantum current in the coherent states representation = Corrente quântica na representação de estados coerentes / Corrente quântica na representação de estados coerentesVeronez, Matheus, 1984- 29 August 2018 (has links)
Orientador: Marcus Aloizio Martinez de Aguiar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-29T15:51:25Z (GMT). No. of bitstreams: 1
Veronez_Matheus_D.pdf: 15544434 bytes, checksum: 608af036b8db9a50a1b8ed957b506d84 (MD5)
Previous issue date: 2015 / Resumo: Representações no espaço de fase são ferramentas bastante difundidas no estudo e na simulação de sistemas quânticos, principalmente devido aos seus apelos clássicos. Tanto na mecânica quântica quanto na clássica, elementos similares, tal como densidades de probabilidade, podem ser definidos e usados para comparar ambos regimes. Neste trabalho construímos a partir de primeiros princípios uma corrente quântica no espaço de fase na representação de estados coerentes canônicos. Determinamos a corrente quântica para sistemas sob evolução de uma hamiltoniana genérica e mostramos que ela pode ser expandida numa série de potências em $hbar$ cujo termo de ordem mais baixa é a corrente clássica. Calculamos analiticamente a corrente para alguns sistemas uni-dimensionais simples. A corrente quântica apresenta propriedades não-clássicas, por exemplo, inversão de momento e surgimento de novos pontos de estagnação aos pares durante a dinâmica. Mostramos que estes pares são compostos por um ponto de sela, que é um zero da densidade de probabilidade e possui uma carga topológica de -1, e por um vórtice, que possui carga +1. Ambos pontos constituem o que denominamos dipolo topológico. Analisamos o papel destes dipolos no espalhamento de uma partícula por uma barreira gaussiana e mostramos que suas localizações em relação às superfícies de energia clássicas e em relação aos máximos da densidade de probabilidade são assinaturas de tunelamento / Abstract: Phase space representations are widely used tools to study and simulate the quantum dynamics of systems, mainly due to its natural classical appeal. In both classical and quantum mechanics, corresponding but not equivalent structures, such as probability densities, can be defined and explored to compare both dynamical regimes. In this work, we constructed from first principles the quantum phase space current for a quantum system in the canonical coherent states representation. We determined the quantum current for systems evolving under a general Hamiltonian, and we showed that the current can be expanded as a power series in $hbar$, whose lowest order term is the classsical current. We also calculated analytically the quantum current for simple one-dimensional systems. The quantum current presents non-classical features, such as momentum inversion and emergence of new stagnation points which appear in pairs during the dynamics. We showed that the pairs are composed by a saddle point, which is a zero of the phase space probability density and bears a topological charge -1, and a vortex, with charge +1. Both points constitute what we named a topological dipole. We analysed the role the dipoles play in the scattering of a particle by a gaussian barrier, and we showed that the location of the dipoles in relation to the classical energy surfaces and the quantum probability density maxima is a fingerprint of quantum tunneling / Doutorado / Física / Doutor em Ciências / 2013/02248-0 / 157615/2011-1 / FAPESP / CNPQ
|
Page generated in 0.0811 seconds