• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 34
  • 33
  • 11
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 274
  • 274
  • 57
  • 36
  • 34
  • 33
  • 33
  • 32
  • 31
  • 30
  • 27
  • 27
  • 26
  • 25
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Non-equilibrium phase transformation of TiO2-SnO2 via reactive sintering and laser ablation condensation.

You, Huei-chiau 10 July 2006 (has links)
none
32

Using Micro-Scale Observations to Understand Large-Scale Geophysical Phenomena: Examples from Seismology and Mineral Physics

January 2015 (has links)
abstract: Earthquake faulting and the dynamics of subducting lithosphere are among the frontiers of geophysics. Exploring the nature, cause, and implications of geophysical phenomena requires multidisciplinary investigations focused at a range of spatial scales. Within this dissertation, I present studies of micro-scale processes using observational seismology and experimental mineral physics to provide important constraints on models for a range of large-scale geophysical phenomena within the crust and mantle. The Great Basin (GB) in the western U.S. is part of the diffuse North American-Pacific plate boundary. The interior of the GB occasionally produces large earthquakes, yet the current distribution of regional seismic networks poorly samples it. The EarthScope USArray Transportable Array provides unprecedented station density and data quality for the central GB. I use this dataset to develop an earthquake catalog for the region that is complete to M 1.5. The catalog contains small-magnitude seismicity throughout the interior of the GB. The spatial distribution of earthquakes is consistent with recent regional geodetic studies, confirming that the interior of the GB is actively deforming everywhere and all the time. Additionally, improved event detection thresholds reveal that swarms of temporally-clustered repeating earthquakes occur throughout the GB. The swarms are not associated with active volcanism or other swarm triggering mechanisms, and therefore, may represent a common fault behavior. Enstatite (Mg,Fe)SiO3 is the second most abundant mineral within subducting lithosphere. Previous studies suggest that metastable enstatite within subducting slabs may persist to the base of the mantle transition zone (MTZ) before transforming to high-pressure polymorphs. The metastable persistence of enstatite has been proposed as a potential cause for both deep-focus earthquakes and the stagnation of slabs at the base of the MTZ. I show that natural Al- and Fe-bearing enstatite reacts more readily than previous studies and by multiple transformation mechanisms at conditions as low as 1200°C and 18 GPa. Metastable enstatite is thus unlikely to survive to the base of the MTZ. Additionally, coherent growth of akimotoite and other high-pressure phases along polysynthetic twin boundaries provides a mechanism for the inheritance of crystallographic preferred orientation from previously deformed enstatite-bearing rocks within subducting slabs. / Dissertation/Thesis / Great Basin Seismicity from 2004 to 2013 (event data) / Great Basin Seismicity from 2004 to 2013 (Google Earth) / Doctoral Dissertation Geological Sciences 2015
33

Solar Wind Sodium and Potassium Abundance Analysis in Genesis Diamond-on-Silicon and Silicon Bulk Solar Wind Collectors, and How Hydration Affects the Microtexture of Olivine Phase Transformation at 18 GPa

January 2015 (has links)
abstract: The present work covers two distinct microanalytical studies that address issues in planetary materials: (1) Genesis Na and K solar wind (SW) measurements, and (2) the effect of water on high-pressure olivine phase transformations. NASA’s Genesis mission collected SW samples for terrestrial analysis to create a baseline of solar chemical abundances based on direct measurement of solar material. Traditionally, solar abundances are estimated using spectroscopic or meteoritic data. This study measured bulk SW Na and K in two different Genesis SW collector materials (diamond-like carbon (DlC) and silicon) for comparison with these other solar references. Novel techniques were developed for Genesis DlC analysis. Solar wind Na fluence measurements derived from backside depth profiling are generally lower in DlC than Si, despite the use of internal standards. Nevertheless, relative to Mg, the average SW Na and K abundances measured in Genesis wafers are in agreement with solar photospheric and CI chondrite abundances, and with other SW elements with low first ionization potential (within error). The average Genesis SW Na and K fluences are 1.01e11 (+9e09, -2e10) atoms/cm2 and 5.1e09 (+8e08, -8e08) atoms/cm2, respectively. The errors reflect average systematic errors. Results have implications for (1) SW formation models, (2) cosmochemistry based on solar material rather than photospheric measurements or meteorites, and (3) the accurate measurement of solar wind ion abundances in Genesis collectors, particularly DlC and Si. Deep focus earthquakes have been attributed to rapid transformation of metastable olivine within the mantle transition zone (MTZ). However, the presence of H2O acts to overcome metastability, promoting phase transformation in olivine, so olivine must be relatively anhydrous (<75 ppmw) to remain metastable to depth. A microtextural analysis of olivine phase transformation products was conducted to test the feasibility for subducting olivine to persist metastably to the MTZ. Transformation (as intracrystalline or rim nucleation) shifts from ringwoodite to ringwoodite-wadsleyite nucleation with decreasing H2O content within olivine grains. To provide accurate predictions for olivine metastability at depth, olivine transformation models must reflect how changing H2O distributions lead to complex changes in strain and reaction rates within different parts of a transforming olivine grain. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2015
34

First-Principles Studies of Point Defects and Phase Transformations in Materials

Bhat, Soumya S January 2014 (has links) (PDF)
The functional and mechanical properties of a material are often determined by the defects in them. A thorough understanding of the relationship between the defects and the properties allows for tailoring a material’s properties into the desired combinations. Amongst the different classes of defects, experimental identification of point defects is typically difficult and indirect, usually requiring an ingenious combination of different techniques. In this context, first-principles calculations, complemented with experiments, offer insights into the formation of defects and their role in properties. This was demonstrated in this thesis through investigations on the effect of calcium vacancies on structure, vibrational and elastic properties hydroxyapatite (HAp), and oxygen vacancies on elastic properties of zinc oxide (ZnO) using first-principles calculations based on density functional theory (DFT). Our results confirm a considerable reduction in the elastic constants of HAp—the inorganic constituent of bone—due to Ca-deficiency, which was experimentally reported earlier. Elastic anisotropic behavior of stoichiometric and Ca-deficient HAp is analyzed, which will be useful in understanding the effects of crystal orientation in designing synthetic bone. Local structural stability of HAp and Ca-deficient HAp structures is assessed with full phonon dispersion studies and the specific signatures in the computed vibrational spectra for Ca deficiency in HAp can be utilized in experimental characterization of different types of defected HAp. In ZnO, formation energies of oxygen vacancies in different types of oxygen deficient structures are analyzed to ascertain their stability. Our results show considerable degradation of some of the elastic moduli due to the presence of such vacancies. Further, the charge state of the defect structure is found to influence the shear elastic constants. Evaluation of elastic anisotropy of stoichiometric and oxygen deficient ZnO indicates the significant anisotropy in elastic properties and stiff c-axis orientation. The second part of the thesis deals with developing some understanding of the pressure-induced phase transformations (PIPT) in an inorganic material, titanium nitride (TiN), and in a metal-organic framework (MOF), erbium formate crystal. PIPT, which is a common phenomenon in many materials, is of great interest in materials science as the properties of the transformation product can diverge significantly from those of the parent phase. Hence, it is important to understand the pressure induced changes so to improve the component reliability and to enhance service life of materials used in high pressure applications. TiN undergoes PIPT from NaCl to CsCl structure. On the basis of our DFT calculations, we propose a new transformation path, which shows that the stress required for this transformation is substantially lower when it is deviatoric in nature than that under hydrostatic pressure. Local stability of the structure is assessed with phonon dispersion determined at different pressures, and we find that CsCl structure of TiN is expected to distort after the transformation. Further, we provide a quantitative comparison of electronic structure of TiN in NaCl structure with that of high pressure phase with implication to electrical conduction properties. Next, we investigate the PIPT associated with bond rearrangement in erbium formate framework. Phase transition pressure is estimated and the corresponding changes in bonding characteristics are analyzed. Estimated lattice constants for both the phases agree well with the earlier experimental results. While the transformation pressure of the framework is overestimated with respect to experiment, our calculations confirm PIPT, and thus provide a theoretical evidence for the experimental finding.
35

Cracking Potential and Temperature Sensitivity of Metakaolin Concrete

Williams, Andrew Robert 03 November 2016 (has links)
Metakaolin is a pozzolanic material with the potential to reduce permeability and chloride ingress; however, quantification of the effects of metakaolin use on the cracking sensitivity of concrete mixtures is needed to ensure that these improvements in performance are not compromised. This study was conducted to investigate the early age cracking potential due to restraint stresses from incorporating metakaolin in concrete. Calorimetry testing showed that metakaolin was more sensitive to temperature than mixtures with only Portland cement. Results showed more shrinkage, less stress relaxation, and higher restraint stress from the inclusion of metakaolin, potentially increasing cracking sensitivity of mixtures. 1 This section was published in Construction and Building Materials[57]. Permission is included in Appendix A
36

Modelling of simultaneous transformations in steels

Chen, Jiawen January 2009 (has links)
The microstructure of a steel is often developed by solid-state transformation from austenite. The major transformation products are allotriomorphic ferrite, pearlite, Widmanstatten ferrite, bainite and martensite, differentiated by morphological features, and their nucleation and growth mechanisms. A steel often consists of several phases as a result of dynamic evolution during continuous cooling. The complexity of the calculation of all the transformations simultaneously poses a challenge. There have been a few attempts at integrating all these transformations into an unified scheme. They involve varying degrees of empiricism. For the first time, a model that can predict simultaneously the volume proportions of all the major transformation products has been developed. The algorithm has taken full account of the thermodynamics and kinetics of individual transformations, instead of empirical equations, so the model should in principle generalise well. The predictions of the model are based on a number of input parameters: the chemical composition, austenite grain size and cooling conditions. The model can simulate cooling at constant rates, or isothermal transformations. Therefore it can also generate continuous cooling transformation (CCT), or time-temperature transformation (TTT) diagrams. The model has demonstrated a consistency in its predictions. The validations of the model against published experiment data and experiments conducted in this work have shown the predictions in most cases are reasonable with errors less than a few volume percent. Further research opportunities presented by the work are reviewed.
37

Texture evolution during beta-quenching of a zirconium alloy

Romero Ospina, Javier Ernesto January 2010 (has links)
Zirconium alloys are widely used by the nuclear industry as fuel cladding and structural materials. Many physical and metallurgical properties of zirconium alloys, that are important for their performance in nuclear reactors, are affected by crystallographic texture due to the strong anisotropy of individual crystals. Irradiation assisted growth is one example. Zirconium crystals deform anisotropically under irradiation, which in the presence of strong textures (like the ones observed in cold-rolled sheet) causes undesirable deformation of components during service. For this reason, the nuclear industry is interested in developing thermomechanical processes that produce random textures, taking advantage of the allotropic phase transformation undergone by zirconium, from the low temperature hcp alpha-phase to the high temperature bcc beta-phase. One of these processes is beta-quenching, which has showed certain success in weakening strong rolling textures. However, there is no consensus about the fundamental mechanisms involved.The aim of this work is to study the evolution of the texture of the zirconium alloy Zircaloy-2 during beta-quenching, in order to gain understanding on the mechanisms involved on texture development and evolution during the alpha-to-beta and beta-to-alpha phase transformations. Firstly industrially beta-quenched samples were characterised using well known techniques such as laboratory X-ray diffraction (LXRD) and electron backscatter diffraction (EBSD), which revealed a relationship between peak temperature and the inherited alpha texture. An in situ synchrotron X-ray diffraction (SXRD) experiment provided, for the first time, information of texture evolution of zirconium during rapid changes and at non-ambient conditions. Different peak temperatures and stress/strain conditions were tested. Detailed post mortem EBSD characterisation of samples studied in situ provided insight on the relationship between the microstructure and the texture. Finally, laboratory furnaces were used to beta-quench samples at very high temperature. It was found that there is selection of orientation variants during beta-quenching of zirconium, but while the selection during the alpha-to-beta transformation is almost negligible, depending on the texture evolution of the beta-phase (affected by grain growth and/or plastic deformation), diverse mechanisms of variant selection act during the beta-to-alpha phase transformation. The inherited textures observed result from the combination of these mechanisms. Some of the results of this work can be transferred to other systems such as titanium and the alpha-gamma-alpha phase transformation in steel.
38

Investigation of Shock Wave Effects on Phase Transformation and Structural Modification of TiO$_2$ and Al$_2$O$_3$

Slama de Freitas, Ana Luiza 11 1900 (has links)
Titanium dioxide and aluminum oxide are conventional materials used in heterogeneous catalysis as catalyst support. The widely used crystalline phase of both supports is the metastable phase (anatase and γ-Al$_2$O$_3$) in which they possess a higher specific surface area compared to the thermodynamically stable phase (rutile and α-Al$_2$O$_3$). However, these phases have better thermal and mechanical stability than anatase and γ-Al$_2$O$_3$. A novel method to induce phase transformation and structural modification of crystalline materials is by applying shock waves. This study aims to experimentally investigate the effects of shock wave treatment on titania and alumina. A pressure-driven shock tube was used in this work to generate the shock waves. Two sets of experiments were carried out for TiO$_2$ and one for Al$_2$O$_3$. Titania samples were prepared in the form of pellets for the first set. Titania and alumina samples were maintained as powder for the second set of experiments. For titania, twenty shocks were applied at nominal temperature and pressure of ~ 1772 K and 23.3 bar in the first set of experiments, while thirty shocks of ~ 1572 K and 66 bar were applied in the second set of experiments. For alumina, twenty shock loadings were applied at the same conditions used for the second set of titania. Characterization techniques, such as XRD, Raman spectroscopy, TEM, SEM, XPS, and N$_2$ physisorption were employed on treated samples in order to understand the effects of shock wave treatment. Partial phase transformation was observed in shock treated TiO2 from Raman spectra and TEM images. Crystallite size reduction was observed in the first set of experiments, while increase in defects was observed by the enhanced Ti$^{+3}$ in XPS spectra in both sets of experiments. Partial phase transformation was also observed in shock treated Al$_2$O$_3$, when mixed with CNF (carbon nanofibers), from XRD patterns and confirmed with XPS. For alumina, TEM and SEM images showed the smallest particles in contact with carbon fibers, while the biggest particles exhibited agglomeration. Physisorption experiments showed a decrease of 40% in surface area and pore collapse.
39

Phase Transformation in the Aluminum/Tungsten System

Al Yasari, Ammar Azeez Mahdi 13 August 2021 (has links)
No description available.
40

Computational Study of Microstructure Evolution during Phase Transformations

Yu, Taiwu January 2021 (has links)
No description available.

Page generated in 0.1275 seconds