• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Motion Estimation Using Complex Discrete Wavelet Transform

Sari, Huseyin 01 January 2003 (has links) (PDF)
The estimation of optical flow has become a vital research field in image sequence analysis especially in past two decades, which found applications in many fields such as stereo optics, video compression, robotics and computer vision. In this thesis, the complex wavelet based algorithm for the estimation of optical flow developed by Magarey and Kingsbury is implemented and investigated. The algorithm is based on a complex version of the discrete wavelet transform (CDWT), which analyzes an image through blocks of filtering with a set of Gabor-like kernels with different scales and orientations. The output is a hierarchy of scaled and subsampled orientation-tuned subimages. The motion estimation algorithm is based on the relationship between translations in image domain and phase shifts in CDWT domain, which is satisfied by the shiftability and interpolability property of CDWT. Optical flow is estimated by using this relationship at each scale, in a coarse-to-fine (hierarchical) manner, where information from finer scales is used to refine the estimates from coarser scales. The performance of the motion estimation algorithm is investigated with various image sequences as input and the effects of the options in the algorithm like curvature-correction, interpolation kernel between levels and some parameter values like confidence threshold iv maximum number of CDWT levels and minimum finest level of detail are also experimented and discussed. The test results show that the method is superior to other well-known algorithms in estimation accuracy, especially under high illuminance variations and additive noise.
2

Nonlinear Phase Based Control to Generate and Assist Oscillatory Motion with Wearable Robotics

January 2016 (has links)
abstract: Wearable robotics is a growing sector in the robotics industry, they can increase the productivity of workers and soldiers and can restore some of the lost function to people with disabilities. Wearable robots should be comfortable, easy to use, and intuitive. Robust control methods are needed for wearable robots that assist periodic motion. This dissertation studies a phase based oscillator constructed with a second order dynamic system and a forcing function based on the phase angle of the system. This produces a bounded control signal that can alter the damping and stiffens properties of the dynamic system. It is shown analytically and experimentally that it is stable and robust. It can handle perturbations remarkably well. The forcing function uses the states of the system to produces stable oscillations. Also, this work shows the use of the phase based oscillator in wearable robots to assist periodic human motion focusing on assisting the hip motion. One of the main problems to assist periodic motion properly is to determine the frequency of the signal. The phase oscillator eliminates this problem because the signal always has the correct frequency. The input requires the position and velocity of the system. Additionally, the simplicity of the controller allows for simple implementation. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2016
3

Modelling of MEMS vibratory gyroscopes utilizing phase detection

Dreyer, Antonie Christoffel 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2008. / This thesis aims to contribute to the modelling and analysis of MEMS gyroscope technologies. Various gyroscope types are studied, and the phase-based vibratory gyroscope is then selected for further investigation. In the literature, vibratory MEMS gyroscopes are mostly used in a single excitation and amplitude detection mode. However, a dual excitation and phase detection mode has recently been proposed, since phase-based detection, as opposed to amplitude-based detection modes, may be expected to increase measurement accuracy (in turn since improved signal-to-noise ratios may be expected). However, the presented analytical model was relatively crude, and the assumptions made appear unrealistic. Accordingly, in this thesis, an improved analyticalmodel is developed. To describe the dual excitation and phase detection problem more comprehensively, principles of classical dynamics are used herein to investigate the dual excitation of a two degree of freedom spring-mass-damper system subjected to an applied rotation rate. In doing so, an analytical formulation including mechanical coupling effects is extended into a generalized form, after which the amplitude and phase responses of the mechanically uncoupled system are interpreted. The differences between the amplitude and phase measurement techniques are illustrated. Finally, the system is modelled numerically, and the scale factor of a hypothetical device based on the phase-based detection method is optimized, subject to constraints on the nonlinearity of the device, using constrained mathematical optimization techniques.
4

DEVELOPMENT OF HYBRID-CONSTRUCT BIOPRINTING AND SYNCHROTRON-BASED NON-INVASIVE ASSESSMENT TECHNIQUES FOR CARTILAGE TISSUE ENGINEERING

2015 December 1900 (has links)
Cartilage tissue engineering has been emerging as a promising therapeutic approach, where engineered constructs or scaffolds are used as temporary supports to promote regeneration of functional cartilage tissue. Hybrid constructs fabricated from cells, hydrogels, and solid polymeric materials show the most potential for their enhanced biological and mechanical properties. However, fabrication of customized hybrid constructs with impregnated cells is still in its infancy and many issues related to their structural integrity and the cell functions need to be addressed by research. Meanwhile, it is noticed that nowadays monitoring the success of tissue engineered constructs must rely on animal models, which have to be sacrificed for subsequent examination based on histological techniques. This becomes a critical issue as tissue engineering advances from animal to human studies, thus raising a great need for non-invasive assessments of engineered constructs in situ. To address the aforementioned issues, this research is aimed to (1) develop novel fabrication processes to fabricate hybrid constructs incorporating living cells (hereafter referred as “construct biofabrication”) for cartilage tissue regeneration and (2) develop non-invasive monitoring methods based on synchrotron X-ray imaging techniques for examining cartilage tissue constructs in situ. Based on three-dimensional (3D) printing techniques, novel biofabrication processes were developed to create constructs from synthetic polycaprolactone (PCL) polymer framework and cell-impregnated alginate hydrogel, so as to provide both structural and biological properties as desired in cartilage tissue engineering. To ensure the structural integrity of the constructs, the influence of both PCL polymer and alginate was examined, thus forming a basis to prepare materials for subsequent construct biofabrication. To ensure the biological properties, three types of cells, i.e., two primary cell populations from embryonic chick sternum and an established chondrocyte cell line of ATDC5 were chosen to be incorporated in the construct biofabrication. The biological performance of the cells in the construct were examined along with the influence of the polymer melting temperature on them. The promising results of cell viability and proliferation as well as cartilage matrix production demonstrate that the developed processes are appropriate for fabricating hybrid constructs for cartilage tissue engineering. To develop non-invasive in situ assessment methods for cartilage and other soft tissue engineering applications, synchrotron phase-based X-ray imaging techniques of diffraction enhanced imaging (DEI), analyzer based imaging (ABI), and inline phase contrast imaging (PCI) were investigated, respectively, with samples prepared from pig knees implanted with low density scaffolds. The results from the computed-tomography (CT)-DEI, CT-ABI, and extended-distance CT-PCI showed the scaffold implanted in pig knee cartilage in situ with structural properties more clearly than conventional PCI and clinical MRI, thus providing information and means for tracking the success of scaffolds in tissue repair and remodeling. To optimize the methods for live animal and eventually for human patients, strategies with the aim to reduce the radiation dose during the imaging process were developed by reducing the number of CT projections, region of imaging, and imaging resolution. The results of the developed strategies illustrate that effective dose for CT-DEI, CT-ABI, and extended-distance CT-PCI could be reduced to 0.3-10 mSv, comparable to the dose for clinical X-ray scans, without compromising the image quality. Taken together, synchrotron X-ray imaging techniques were illustrated promising for developing non-invasive monitoring methods for examining cartilage tissue constructs in live animals and eventually in human patients.

Page generated in 0.0512 seconds