Spelling suggestions: "subject:"phaseshift conveying"" "subject:"phaseshifts conveying""
11 |
Design and implementation of a high data rate QPSK demodulator for nanosatellitesBiyoghe, Joel S. January 2017 (has links)
Thesis (Master of Engineering in Electrical Engineering)--Cape Peninsula University of Technology, 2017. / This dissertation presents the development of a quadrature phase shift keying (QPSK) demodulator for nanosatellites that complies with both the limited resources associated with nanosatellites as well as the flexibility and configurability required for a software defined radio (SDR) platform. This research project is a component of a bigger project, which is to develop a high-speed receiver for nanosatellites, and aims to provide a practical solution to the need for communication technologies that support emerging nanosatellite applications, such as Earth observation and communications. The development of the QPSK demodulator follows an all-digital implementation approach. The main reason for selecting this approach is to have a system that is flexible and reconfigurable to comply with the SDR requirements. Another reason for selecting this approach is to comply with the low noise system, low power consumption as well as the small size and weight requirements associated with nanosatellites. The QPSK demodulator is implemented on an IGLOO2 Field Programmable Gate Array (FPGA), due to its robustness to radiation and high-speed capability. Initially, the techniques used to design each subsystem of the QPSK demodulator are selected. Then, algorithms to digitally implement the designed subsystems are produced. Thereafter, the code for the digital QPSK demodulator is written and verified in Matlab first. The simulation of the Matlab-based QPSK demodulator performs satisfactorily. Subsequently, the code to implement the QPSK demodulator on an FPGA (IGLOO2) has been written in Libero, using VHSIC Hardware Description Language (VHDL). The resulting FPGA-based QPSK demodulator has been emulated in Libero (an integration and development environment (IDE) for Microsemi FPGAs) using a test-bench as well as other analysis tools. The test-bench results are visualized using Modelsim.
The results show that the demodulator can support data rates up to 13.25 Mbps if 16 samples-per-symbols are used, and up to 26.5 Mbps if 8 samples-per-symbols are used. It also has a very good bit-error-rate performance, which is simulated to be within a factor of 5 of the theoretical limit of QPSK modulation. Finally, the demodulator consumes less than 15 mW at the maximum operating speed. and has been coded to mitigate the effects of space radiation and noise contriution by the demodulator itself.
|
12 |
APSK Transmission Experiment Using Digital Coherent ReceiverMao, Kuei-Chung 02 July 2010 (has links)
In the current transmission system, the information bandwidth of the optical fiber communication system is limited by optical amplifier bandwidth, and more efficient use of bandwidth is a very important issue. Amplitude and phase shift keying (APSK) is an advanced modulation scheme to improve the spectral efficiency and can effectively increase the transmission capacity. Certainly, APSK format has a good potential for development. This master thesis is focusing on that to study the transmission performance of the APSK format using digital coherent receiver.
As the extinction ratio (ER) of the amplitude shift keying (ASK) signal affects the performances of the ASK signal and phase shift keying (PSK) signal simultaneously, the effect of the ER on the APSK transmission performance was studied. The APSK format has the trade-off between the performances of both the ASK signal and the PSK signal through the ER of the ASK signal. To overcome this issue, a method named zero-nulling method had been proposed, and this method solved the trade-off issue properly.
At first, the amendment is to modify the digital coherent receiver program, confirmed that the digital coherent receiver program can correctly resolve APSK signal. Second, in this master thesis, I set up a 500km long optical fiber to measure the transmission performance under APSK format, and try to use recirculating loop system to further increase the transmission distance to several thousand kilometers.
Finally, by further modify the receiver program to achieve APSK modulation of the zero-nulling method, and can prove its feasibility.
|
13 |
Coded continuous-phase FSK information theoretic limits and receiver design /Cheng, Shi, January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains xiii, 146 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 136-146).
|
14 |
An implementation of acquisition using transform domain/cyclic code shift keying system on an multipath channelAl-Sharari, Hamed. January 1998 (has links)
Thesis (M.S.)--Ohio University, November, 1998. / Title from PDF t.p.
|
15 |
AN EXTENSION OF SOQPSK TO M-ARY SIGNALLINGBishop, Chris, Fahey, Mike 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Shaped Offset Quadrature Phase Shift Keying (SOQPSK) has the advantages of low sidelobes and high detection probability; however, its main lobe has a fixed width set by the number of constellation points. By slightly modifying the modulation scheme, the four constellation points of quadrature shift keying can be changed to M constellation points where M is a power of 2. After this change, the power spectral density (PSD) retains low sidelobes, and the desirable property of being able to detect the signal by integrating over two symbol periods is retained.
|
16 |
ADVANCED RANGE TELEMETRY (ARTM) TIER I COMPATIBLE DEMODULATOR TESTING AND RESULTSTemple, Kip 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / The Nova HYPERMOD demodulator operates in three modes, the classic pulse-code
modulation/frequency modulation (PCM/FM), sometimes known as continuous phase frequency shift
keying (CPFSK) mode, shaped offset quadrature phase shift keying (SOQPSK) mode, and continuous
phase modulation (CPM) mode. Of interest to this paper is SOQPSK mode which is a waveform similar
to the Advanced Range Telemetry (ARTM) Tier I waveform, Feher’s Quadrature Phase Shift Keying, B
version (FQPSK-B) revision (Rev) A1. Also considered is another variant, FQPSK-JR. This paper
will outline the cross compatibility and resynchronization speed of these waveforms based upon
ARTM-adopted demodulator performance tests. The results of these laboratory tests comparing the
HYPERMOD demodulator, the enhanced Tier I demodulator, and the current Tier I reference
demodulator, both from RF Networks, will be presented.
|
17 |
Synchronization for Burst-Mode APSKShaw, Christopher 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / We derive bounds on the performance of data-aided joint estimators for timing offset, carrier phase offset, and carrier frequency offset for use in an APSK packet-based communication link. It is shown that the Cramér-Rao Bound (CRB) is a function of the training sequence, the signal-to-noise ratio (SNR), and the pulse shape. We also compute APSK training sequences of different lengths that minimize the CRB for each of the parameters.
|
18 |
Space-Time Shaped Offset QPSKDang, Xiaoyu 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / This paper describes the use of orthogonal space-time block codes to overcome the performance and complexity difficulties associated with the use of Shaped Offset QPSK (SOQPSK) modulation, a ternary continuous phase modulation (CPM), in multiple-input multiple-output telemetry systems. The orthogonal space-time block code is applied to SOQPSK waveforms in the same way it would be applied to symbols. The procedure allows the receiver to orthogonalize the link. The main benefits of this orthogonalization are the easy realization of the transmit diversity for the offset-featured SQOSPK, and the removal of the noise correlation at the input to the space-time decoder and the elimination of I/Q interference when space time orthogonalization is applied to the symbol level.
|
19 |
Adjacent Channel Interference for Turbo-Coded APSKShaw, Christopher 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / A study of the effects of interference caused by adjacent channels on the performance of turbo-coded 16- and 32-APSK. Included in our discussion is the spectral regrowth in the nonlinear power amplifier when driven by a non-constant envelope modulation. Ultimately, we present a set of channel spacing guidelines when using turbo-coded APSK for aeronautical telemetry.
|
20 |
FLEXIBLE ALL-DIGITAL RECEIVER FOR BANDWIDTH EFFICIENT MODULATIONSGray, Andrew, Srinivasan, Meera, Simon, Marvin, Yan, Tsun-Yee 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / An all-digital high data rate parallel receiver architecture developed jointly by Goddard Space Flight Center and the Jet Propulsion Laboratory is pre- sented. This receiver utilizes only a small number of high speed components along with a majority of lower speed components operating in a parallel fre- quency domain structure implementable in CMOS, and can process over 600 Mbps with numerous varieties of QPSK modulation, including those incorpo- rating precise pulse shaping for bandwidth eÆcient modulation. Performance results for this receiver for bandwidth eÆcient QPSK modulation schemes such as square-root raised cosine pulse shaped QPSK and Feher’s patented QPSK are presented, demonstrating the great degree of exibility and high performance of the receiver architecture.
|
Page generated in 0.0395 seconds