Spelling suggestions: "subject:"phasenmehrdeutigkeit"" "subject:"mehrdeutigkeit""
1 |
FARN – A Novel UAV Flight Controller for Highly Accurate and Reliable Navigation / FARN – Eine neue UAV-Flugsteuerung für hochpräzise und zuverlässige NavigationStrohmeier, Michael January 2021 (has links) (PDF)
This thesis describes the functional principle of FARN, a novel flight controller for Unmanned Aerial Vehicles (UAVs) designed for mission scenarios that require highly accurate and reliable navigation. The required precision is achieved by combining low-cost inertial sensors and Ultra-Wide Band (UWB) radio ranging with raw and carrier phase observations from the Global Navigation Satellite System (GNSS). The flight controller is developed within the scope of this work regarding the mission requirements of two research projects, and successfully applied under real conditions.
FARN includes a GNSS compass that allows a precise heading estimation even in environments where the conventional heading estimation based on a magnetic compass is not reliable. The GNSS compass combines the raw observations of two GNSS receivers with FARN’s real-time capable attitude determination. Thus, especially the deployment of UAVs in Arctic environments within the project for ROBEX is possible despite the weak horizontal component of the Earth’s magnetic field.
Additionally, FARN allows centimeter-accurate relative positioning of multiple UAVs in real-time. This enables precise flight maneuvers within a swarm, but also the execution of cooperative tasks in which several UAVs have a common goal or are physically coupled. A drone defense system based on two cooperative drones that act in a coordinated manner and carry a commonly suspended net to capture a potentially dangerous drone in mid-air was developed in conjunction with the
project MIDRAS.
Within this thesis, both theoretical and practical aspects are covered regarding UAV development with an emphasis on the fields of signal processing, guidance and control, electrical engineering, robotics, computer science, and programming of embedded systems. Furthermore, this work aims to provide a condensed reference for further research in the field of UAVs.
The work describes and models the utilized UAV platform, the propulsion system, the electronic design, and the utilized sensors. After establishing mathematical conventions for attitude representation, the actual core of the flight controller, namely the embedded ego-motion estimation and the principle control architecture are outlined. Subsequently, based on basic GNSS navigation algorithms, advanced carrier phase-based methods and their coupling to the ego-motion estimation framework are derived. Additionally, various implementation details and optimization steps of the system are described. The system is successfully deployed and tested within the two projects. After a critical examination and evaluation of the developed system, existing limitations and possible improvements are outlined. / Diese Arbeit beschreibt das Funktionsprinzip von FARN, einer neuartigen Flugsteuerung für unbemannte Luftfahrzeuge (UAVs), die für Missionsszenarien entwickelt wurde, die eine hochgenaue und zuverlässige Navigation erfordern. Die erforderliche Präzision wird erreicht, indem kostengünstige Inertialsensoren und Ultra-Breitband (UWB) basierte Funkreichweitenmessungen mit Roh- und Trägerphasenbeobachtungen des globalen Navigationssatellitensystems (GNSS) kombiniert werden. Die Flugsteuerung wird im Rahmen dieser Arbeit unter Berücksichtigung der Missionsanforderungen zweier Forschungsprojekte entwickelt und unter realen Bedingungen erfolgreich eingesetzt.
FARN verfügt über einen GNSS-Kompass, der eine präzise Schätzung des Steuerkurses auch in Umgebungen erlaubt, in denen eine konventionelle Schätzung mit Hilfe eines Magnetkompasses nicht zuverlässig ist. Der GNSS-Kompass kombiniert die Messungen von zwei GNSS-Empfängern mit der echtzeitfähigen Lagebestimmung von FARN. Damit ist insbesondere der Einsatz von UAVs in arktischen Umgebungen im Rahmen des Projektes ROBEX trotz der schwachen horizontalen Komponente des Erdmagnetfeldes möglich.
Zusätzlich erlaubt FARN eine zentimetergenaue relative Positionierung mehrerer UAVs in Echtzeit. Dies ermöglicht präzise Flugmanöver innerhalb eines Schwarms, aber auch die Ausführung kooperativer Aufgaben, bei denen mehrere UAVs ein gemeinsames Ziel haben oder physikalisch gekoppelt sind. In Verbindung mit dem Projekt MIDRAS wurde ein Drohnenabwehrsystem entwickelt, das auf zwei kooperativen Drohnen basiert, die koordiniert agieren und ein gemeinsam aufgehängtes
Netz tragen, um eine potenziell gefährliche Drohne in der Luft einzufangen.
Im Rahmen dieser Arbeit werden sowohl theoretische als auch praktische Aspekte
der UAV-Entwicklung behandelt, wobei der Schwerpunkt auf den Bereichen der Signalverarbeitung, der Navigation und der Steuerung, der Elektrotechnik, der Robotik sowie der Informatik und der Programmierung eingebetteter Systeme liegt.
Darüber hinaus soll diese Arbeit eine zusammengefasste Referenz für die weitere
Drohnenforschung darstellen.
Die Arbeit erläutert und modelliert die verwendete UAV-Plattform, das Antriebssystem, das elektronische Design und die eingesetzten Sensoren. Nach der Ausarbeitung mathematischer Konventionen zur Lagedarstellung, wird der eigentliche Kern des Flugreglers erläutert, nämlich die eingebettete Schätzung der Eigenbewegung und die prinzipielle Regelungsarchitektur. Anschließend werden, basierend auf grundlegenden Navigationsalgorithmen, fortgeschrittene trägerphasenbasierte Methoden und deren Zusammenhang mit der Schätzung der Eigenbewegung abgeleitet. Zusätzlich werden verschiedene Implementierungsdetails und Optimierungsschritte des Systems beschrieben. Das System wird innerhalb der beiden Projekte erfolgreich verwendet und getestet. Nach einer kritischen Untersuchung und Bewertung des entwickelten Systems werden bestehende Einschränkungen und mögliche Verbesserungen aufgezeigt.
|
Page generated in 0.0552 seconds