• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Authigenic Minerals: Locality 80, Bed I Tuffs, Olduvai Gorge, Tanzania

JARRETT, ROBERT E 10 May 2014 (has links)
Understanding climatic and water-mineral chemistry affecting hominin habitats duringthe period 1.92 to 1.80 Ma in Paleolake Olduvai basin, Tanzania is of social and scientific interest. Previous Olduvai research reported climate cycles in bulk sample mineral analyses. Xray diffraction, X-ray fluorescence, and color analyses of Locality 80 Tuff Bed I samples tested the null hypothesis: Alteration mineralogy of Central Basin volcanic Tuffs IA through IF reflect salinity/alkalinity cycles. Such cyclicity was not found. Several primary authigenic minerals were confirmed, but not as previously reported. Tuffs are thoroughly altered, mostly to potassium-feldspars, zeolites, and carbonates, plus other feldspars and clay minerals (clays not in this study). Nevertheless, other findings reveal there is more to be learned. Results imply a majorgeochemical shift around 1.869-1.857 Ma, from non-zeolite forming environments to zeolite forming environments. A newly developed age model could aid re-analysis of past work and assist future research.
2

Synthesis of zeolites and their application as soil amendments to increase crop yield and potentially act as controlled release fertilizers

Jakkula, Vijay S. January 2005 (has links)
Zeolites have been used in agriculture since the 1960s, due to the effectiveness of these crystalline microporous solids as soil amendments for plant growth, their cation exchange capacity (CEC) and slow-release fertilizer properties. Most work on slow-release fertilizers has focused on natural Clinoptilolite, Phillipsite and Chabazite. The aim of this study was to synthesize zeolites, study their effectiveness as soil amendments and their ability to act as controlled release fertilizers to decrease nitrate leaching. Nitrate pollution of groundwater is a major agro-environmental concern. The zeolites Phillipsite and Linde-type F were synthesized from aluminosilicate gels; ion exchanged to introduce ammonium and characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), Thermo-gravimetric analysis (TGA) and Scanning electron microscopy (SEM) techniques, both before and after ion exchange. Ammoniumexchanged Phillipsites (natural and synthetic), ammonium-exchanged synthetic Linde-type F (the zeolite having highest affinity towards ammonium) and ammonium exchanged Phillipsites (high crystalline and high aluminium) were compared with conventional NPK fertilizer.Three glasshouse experiments were performed to study the effects of zeolite-amended soils on maize growth. Ion exchanged synthetic and natural Phillipsites were first used as soil amendments (w/w 2, 4, 8% zeolite to soil). Synthetic Phillipsite, at 2% loading, resulted in the most significant improvement in both plant growth and phased ammonium release. The synthetic ammonium-exchanged zeolites Phillipsite and Linde-type F (at w/w 1, 2, 4%) were then compared; synthetic Phillipsite, at 2% loading, again resulted in the most significant plant growth response with an increase (≥15%) in shoot dry weight and a decrease (≥30%) in nitrate leaching. Experiments using unexchanged synthetic Phillipsite (at w/w 2%), but with added NPK fertilizer, showed increased plant growth and decreased nitrate leaching, compared with parallel experiments containing unexchanged synthetic Linde-type F (at w/w 2%) and a conventional fertilizer amended soil. This revealed the beneficial effect of Phillipsite for soil amendment, even without ion exchange to the ammonium form. To study the physico-chemical properties affecting the release of ammonium from the Phillipsite framework; high crystalline/low aluminium and low crystalline/high aluminium forms were synthesized and ion exchanged. Both forms were introduced as soil amendments (at w/w 1 and 2%) and experiments showed that the lower zeolite crystallinity decreased cation exchange and therefore decreased nitrate leaching. Experimental results from the glasshouse experiments and cation exchange capacity (CEC) experiments suggest that synthetic Phillipsite, at lower loadings (1 and 2% w/w zeolite to soil) have most potential as soil amendments for both plant growth and controlled-release applications. This conclusion is supported by soil leachate and shoots dry weight analysis. Furthermore, Phillipsite, synthesized in a low crystalline and low ammonium form, may be an even better soil amendment for controlled release of ammonium, which will thereby further decrease nitrate pollution.

Page generated in 0.0389 seconds