• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuous speech phoneme recognition using neural networks and grammar correction.

January 1995 (has links)
by Wai-Tat Fu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 104-[109]). / Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Problem of Speech Recognition --- p.1 / Chapter 1.2 --- Why continuous speech recognition? --- p.5 / Chapter 1.3 --- Current status of continuous speech recognition --- p.6 / Chapter 1.4 --- Research Goal --- p.10 / Chapter 1.5 --- Thesis outline --- p.10 / Chapter 2 --- Current Approaches to Continuous Speech Recognition --- p.12 / Chapter 2.1 --- BASIC STEPS FOR CONTINUOUS SPEECH RECOGNITION --- p.12 / Chapter 2.2 --- THE HIDDEN MARKOV MODEL APPROACH --- p.16 / Chapter 2.2.1 --- Introduction --- p.16 / Chapter 2.2.2 --- Segmentation and Pattern Matching --- p.18 / Chapter 2.2.3 --- Word Formation and Syntactic Processing --- p.22 / Chapter 2.2.4 --- Discussion --- p.23 / Chapter 2.3 --- NEURAL NETWORK APPROACH --- p.24 / Chapter 2.3.1 --- Introduction --- p.24 / Chapter 2.3.2 --- Segmentation and Pattern Matching --- p.25 / Chapter 2.3.3 --- Discussion --- p.27 / Chapter 2.4 --- MLP/HMM HYBRID APPROACH --- p.28 / Chapter 2.4.1 --- Introduction --- p.28 / Chapter 2.4.2 --- Architecture of Hybrid MLP/HMM Systems --- p.29 / Chapter 2.4.3 --- Discussions --- p.30 / Chapter 2.5 --- SYNTACTIC GRAMMAR --- p.30 / Chapter 2.5.1 --- Introduction --- p.30 / Chapter 2.5.2 --- Word formation and Syntactic Processing --- p.31 / Chapter 2.5.3 --- Discussion --- p.32 / Chapter 2.6 --- SUMMARY --- p.32 / Chapter 3 --- Neural Network As Pattern Classifier --- p.34 / Chapter 3.1 --- INTRODUCTION --- p.34 / Chapter 3.2 --- TRAINING ALGORITHMS AND TOPOLOGIES --- p.35 / Chapter 3.2.1 --- Multilayer Perceptrons --- p.35 / Chapter 3.2.2 --- Recurrent Neural Networks --- p.39 / Chapter 3.2.3 --- Self-organizing Maps --- p.41 / Chapter 3.2.4 --- Learning Vector Quantization --- p.43 / Chapter 3.3 --- EXPERIMENTS --- p.44 / Chapter 3.3.1 --- The Data Set --- p.44 / Chapter 3.3.2 --- Preprocessing of the Speech Data --- p.45 / Chapter 3.3.3 --- The Pattern Classifiers --- p.50 / Chapter 3.4 --- RESULTS AND DISCUSSIONS --- p.53 / Chapter 4 --- High Level Context Information --- p.56 / Chapter 4.1 --- INTRODUCTION --- p.56 / Chapter 4.2 --- HIDDEN MARKOV MODEL APPROACH --- p.57 / Chapter 4.3 --- THE DYNAMIC PROGRAMMING APPROACH --- p.59 / Chapter 4.4 --- THE SYNTACTIC GRAMMAR APPROACH --- p.60 / Chapter 5 --- Finite State Grammar Network --- p.62 / Chapter 5.1 --- INTRODUCTION --- p.62 / Chapter 5.2 --- THE GRAMMAR COMPILATION --- p.63 / Chapter 5.2.1 --- Introduction --- p.63 / Chapter 5.2.2 --- K-Tails Clustering Method --- p.66 / Chapter 5.2.3 --- Inference of finite state grammar --- p.67 / Chapter 5.2.4 --- Error Correcting Parsing --- p.69 / Chapter 5.3 --- EXPERIMENT --- p.71 / Chapter 5.4 --- RESULTS AND DISCUSSIONS --- p.73 / Chapter 6 --- The Integrated System --- p.81 / Chapter 6.1 --- INTRODUCTION --- p.81 / Chapter 6.2 --- POSTPROCESSING OF NEURAL NETWORK OUTPUT --- p.82 / Chapter 6.2.1 --- Activation Threshold --- p.82 / Chapter 6.2.2 --- Duration Threshold --- p.85 / Chapter 6.2.3 --- Merging of Phoneme boundaries --- p.88 / Chapter 6.3 --- THE ERROR CORRECTING PARSER --- p.90 / Chapter 6.4 --- RESULTS AND DISCUSSIONS --- p.96 / Chapter 7 --- Conclusions --- p.101 / Bibliography --- p.105

Page generated in 0.0621 seconds