Spelling suggestions: "subject:"dephosphine primaire"" "subject:"bisphosphine primaire""
1 |
Diamondoids : functionalization, metallization and application in catalysis / Diamantoïdes : fonctionnalisation, métallisation et application en catalyseMoncea, Oana 30 May 2018 (has links)
Les phosphines alkyl primaires ont la réputation d’être des composés très sensibles à l’air, parfois même pyrophoriques. Pour cette raison, leur application en tant que ligands est assez restreinte. L'introduction de substituants encombrants qui peuvent stabiliser les phosphines primaires est une méthode pour diminuer leur sensibilité à l'oxygène. Les hydrocarbures ayant une structure cage, comme les diamantoïdes, peuvent donc être des substituants idéaux pour stabiliser les phosphines primaires. Le travail décrit dans cette thèse porte sur la synthèse et les applications de phosphines primaires diamantoïdes. Premièrement, leur utilisation en tant que blocs de construction pour l’élaboration des matériaux organo-hybrides via des dépôts en phase vapeur sera illustrée. D'autre part, leur utilisation en tant que ligands dans des réactions d'arylation de N-hétérocycles (typiquement l’indole) catalysées par des métaux sera présentée.Une avancée importante dans la chimie des diamantoïdes est représentée par leur découverte et leur isolement en grande quantités à partir de sources naturelles telle que le pétrole. La fonctionnalisation des diamantoïdes composés d'un plus grand nombre de cages que l'adamantane a été explorée pour la première fois au milieu des années 60. Diverses fonctions chimiques ont été introduites sur le squelette type cage de ces hydrocarbures, résultant en de nouveaux dérivés aux propriétés exceptionnelles. Afin d'explorer pleinement le potentiel de ces molécules, la dissymétrisation des cages a été étudiée en tant que moyen d'obtention des blocs structurels bien définis avec deux fonctionnalités différentes. Auparavant, l’obtention de deux fonctions chimiques différentes sur le squelette de ces hydrocarbures a été rendue possible par des séquences de protection / déprotection.Notre premier objectif était de développer une nouvelle approche synthétique gouvernée par la réaction contrôlée de manière cinétique dans des milieux acides forts donnant accès direct à des diamantoïdes difonctionnalisés. Cette stratégie a été développée avec succès pour les diamantoïdes phosphorylés qui, après réduction, ont donné une nouvelle classe de phosphines alkyle primaires qui se sont révélées relativement stables à l'air. La post-fonctionnalisation de ces phosphines a également été réalisée et sera discutée dans la section des résultats non-publiés.Des progrès révolutionnaires ont été accomplis au cours de la dernière décennie dans le domaine des nanomatériaux à base de carbone sp2, tels que les fullerènes, les nanotubes de carbone et les graphènes. En comparaison, les matériaux basés sur du carbone sp3, tels que ceux incorporant des diamantoïdes, composés qui combinent à la fois quelques caractéristiques uniques du diamant et des nanostructures de carbone, restent mal connus à ce jour. Dans ce chapitre, la synthèse d'un nouveau matériau organohybride ayant une structure constituée d’un coeur organique (diamantoïde) et d’une surface métallique (typiquement, palladium ou platine) sera discutée.L'indole est un hétérocycle azoté largement intégré en chimie médicinale comme sous-unité structurale de médicaments pour le traitement du diabète de type 2, du cancer et du VIH. Ce motif est également présent dans une variété de produits naturels, constituant ainsi une cible en synthèse organique. Trois stratégies de synthèse sont possibles pour obtenir des indoles fonctionnalisés et seront décrites dans la section d'introduction.Dans ce chapitre, l'activation C–H en position C2 du (N–H) indole sera décrite. Cette réaction a été conduite en milieux aqueux, sous air, et à l’aide des phosphines primaires diamantoïdes décrites dans le Chapitre 1 utilisées ici comme ligands du palladium en milieu biphasique. Les iodures d'aryle ont été testés en tant que partenaires de couplage, et la réaction s’est révélée sélective pour la position C2 avec des très bons rendements. / Widespread application of primary alkyl phosphines is limited due to their high sensitivity towards oxidation, often resulting in pyrophoricity. Introduction of bulky substituents that can kinetically stabilize primary phosphines is one method for decreasing their oxygen sensitivity. Bulky cage hydrocarbons like diamondoids, which are naturally occurring molecules, can therefore be ideal substituents for stabilizing primary phosphines. The work described herein deals with the synthesis and applications of primary diamondoid phosphines. Firstly, they are used as building blocks for the construction of organo-hybrid materials by mild vapor deposition, and secondly, as ligands in metal catalyzed arylation reactions of N-heterocycles.An important advance in the chemistry of diamondoids was made possible after their discovery and isolation in large quantities from natural sources like petroleum. Functionalization of diamondoids composed of higher number of cages than adamantane was first explored in the mid-1960s. Various functionalities have been introduced onto diamondoids resulting in new derivatives with outstanding properties. In order to fully explore the potential of these molecules, desymmetrization of the cages was investigated as a means for obtaining well-defined structural building blocks with two different functionalities suitable for thin film growth. This process had been achieved previously only by protection/deprotection sequences.Our first aim was to develop a new synthetic approach governed by the kinetically controlled reaction in strong acidic media, which enables direct access to unequally functionalized diamondoids. This type of reaction was successful for phosphorylated diamondoids which upon reduction gave diamondoid primary phosphines, a new class of pure alkyl primary phosphines that were found to be relatively air stable. Further post-functionalization of these molecules was also achieved and will be discussed in the unpublished results section.Revolutionary progress was made during the last decade in the area of novel carbon nanomaterials, such as sp2-C based fullerenes, nanotubes, and graphenes. In comparison, sp3-C materials based on a diamondoid scaffold that combines the unique features of both diamond and carbon nanostructures are unknown to date.Unlike metal nanocomposites based on sp2-carbon skeletons, which benefit from a rich surface chemistry due to many functional groups, metal/sp3-carbon based nanostructures are much less developed and many challenging functionalization issues remain. In this chapter, the synthesis of novel organohybrid material with core-shell like structure will be discussed. The core of the hybrid is made of organic molecules, namely diamondoids, and the shell is made of a thin transition metal layer, such as palladium or platinum.Indole is a nitrogen-containing heterocycle widely used in medicinal chemistry as a structural subunit of drug candidates for the treatment of type 2 diabetes, cancer and HIV. This scaffold is also present in a variety of natural products, therefore constituting a target in organic synthetic chemistry. Three synthetic strategies are possible to obtain functionalized indoles and will be described in the introduction.In this chapter, the C–H activation of unprotected indole moiety in position 2 of the heterocycle will be described. The reaction was done in aqueous media under aerobic conditions and diamondoid primary phosphines were used as ligands in this biphasic synthesis. Aryl iodides were tested as coupling partners and the reaction was selective for the C2 position affording excellent yields of the desired arylated indoles. With aryl bromides, a loss in selectivity was observed; yet the reaction proceeded with a surprising P/Pd ratio of 0.5/1.
|
Page generated in 0.0669 seconds