• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Unveiling the architectures of five bacterial biomolecular machines

Fage, Christopher Dane 10 September 2015 (has links)
Natural products represent an incredibly diverse set of chemical structures and activities. Given this fathomless, ever-evolving diversity, a reasonable approach to designing new molecules entails taking a closer look at the biochemistry that Nature has crafted over billions of years on Earth. In particular, much can be learned by unveiling the architectures of proteins, life’s molecular machines, through methods like X-ray crystallography. Acquiring the blueprints of an enzyme brings us closer to understanding the mechanism by which the enzyme transforms a simple substrate it into a complex product with biological function, and inspires us to engineer such systems to our own ends. With a focus on macromolecular structural characterization, this document elaborates on five Gram-negative bacterial biosynthetic enzymes from two categories: Cell-surface modifiers and polyketide synthases. Among the first category are the glycyl carrier protein AlmF and its ligase AlmE of Vibrio cholerae and the phosphoethanolamine transferase EptC of Campylobacter jejuni. These proteins are responsible for decorating cell-surface molecules (e.g., lipid A) of pathogenic bacteria with small functional groups to promote antibiotic resistance, motility, and host colonization. AlmE and EptC represent potential drug targets and their structures lay the groundwork for the design of therapeutics against food-borne illnesses. Included in the second category are the [4+2]-cyclase SpnF and two ketoreductase-linked dimerization elements, each from the spinosyn biosynthetic pathway in Saccharopolyspora spinosa. The former catalyzes a putative Diels-Alder reaction to form a tricyclic precursor of the insecticide spinosad, while the latter two organize ketoreductase domains within modules of a polyketide synthase. The second category also includes Ralstonia eutropha β-ketoacyl thiolase B, a substrate-permissive enzyme that can make or break carbon-carbon bonds with assistance from Coenzyme A or an analogous thiol. Each of these proteins exhibit intriguing structural features or catalyze reactions that show promise for biochemical engineering. / text

Page generated in 0.0654 seconds