• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression characterization of PFK-liver, PFK-muscle, and PFK-brain RNA isoforms in murine preimplantation embryos using RT-PCR / Expression characterization of 6-phosphofructo-1-kinase-liver, 6-phosphofructo-1-kinase-muscle, and 6-phosphofructo-1-kinase-brain ribonucleic acid isoforms in murine preimplantation embryos using reverse transcription-polymerase chain reaction

Henry, Jeff January 2006 (has links)
The regulatory enzyme 6-phosphofructo-l-kinase (PFK) controls the key, rate-limiting step in glycolysis. There are 3 known mammalian isoforms termed PFK-muscle (PFK-A), PFK-liver (PFK-B), and PFK-brain (PFK-C) that randomly aggregate to form active homo- and heterotetrameric isozymes with their respective frequencies and kinetic properties contingent upon the presence and concentration of individual subunits. This study utilized RT-PCR and densitometry analyses to characterize the expression patterns of the mRNA for each isoform during mouse preimplantation development. PFK-B is increasingly expressed across these stages with a significant increase in PFK-B transcript between 8-cell (0.425 ± 0.158) and morula (0.579 ± 0.197) stages (p < 0.0005). Neither PFK-A nor PFK-C mRNA was detected at any of the preimplantation stages tested. The statistically significant increase in PFK-B corresponded with the known juncture of the switch from the oxidation of maternally supplied pyruvate to a predominant glycolyticmetabolism. Such timing suggested the direct involvement of elevated PFK-B transcription with an increase in glycolysis. / Department of Biology

Page generated in 0.0766 seconds