• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing Rangeland Restoration Techniques: A Look at Phosphorus Fertilizer as a Seed Coating to Improve Bluebunch Wheatgrass Growth

Parkinson, Morgan Elaine 30 July 2020 (has links)
Planting native species after a major disturbance is a critical tool land managers use to stabilize soils, restore ecosystem processes, and prevent weed invasion. However, within the sagebrush steppe and other arid and semi-arid environments the percentage of sown seeds that produce an adult plant is remarkably low. Applying fertilizers at the time of planting may improve native plant establishment by increasing the ability of the seedlings to cope with environmental stresses. However, traditional fertilizer applications are often economically infeasible and may be counterproductive by encouraging weed invasion. Seed coating technology allows for the efficient application of fertilizers within the microsite of the seeded species. The objective of our research was to determine the optimal rate of fertilizer to apply to the seed to improve seedling emergence and plant growth. We applied a phosphorus (P) rich fertilizer (0.13 g P g-1) to bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) Á. Löve) seeds in a rotary coater at rates ranging from 0 to 50 g of fertilizer 100 g-1 seed. Three separate studies were conducted to test germination, biomass, relative growth rate, and tissue nutrient uptake. Study one showed decreasing root and shoot biomass and increasing time to 50% germination as fertilizer rates increased. Study two showed no difference in relative growth rate between the controls and fertilizer treatments. Study three showed no difference in root and shoot biomass or nutrient concentration between treatments except in the lowest fertilizer treatment (10 g fertilizer 100 g-1 seed), which was significantly lower in root and shoot biomass than all other treatments but had higher P tissue concentrations than all other treatments. Collectively these results showed no evidence that a P fertilizer coating could aid in bluebunch wheatgrass seedling establishment. Because bluebunch wheatgrass and similar late-seral plants have evolved with low nutrient requirements they may not be physiologically capable of handling increased nutrient supply, which may explain the results of our studies. Continued studies and fieldwork need to be performed to evaluate the potential of fertilizer seed coatings in restoration efforts.
2

Factors Affecting the Bioaccessibility of Pb in Soils Amended with Phosphate: A Meta-analysis and Bench-scale Study

Mayer, Manfred M. 09 August 2022 (has links)
No description available.
3

Effect of variable rates of cattle and poultry manure-based phospho-composts on growth, yield and quality of potato (Solanum tuberosum L.)

Mmadi, Mashupyane Josephine January 2019 (has links)
Thesis (M.Sc. (Soil Science)) -- University of Limpopo, 2019 / Phosphorus (P) deficiency has been reported in 30- 40% of global arable land, which poses a huge threat in potato production because of its critical role in the early vegetative development and tuber formation. The use of low cost ground phosphate rock (GPR) as an alternative P fertilizer source has gained recognition. Although GPR contains high P percentage, its direct application is less beneficial immediately due to its low reactivity which makes P unavailable for plant uptake. In this experiment, GPR was co-composted with cattle and poultry manure in order to enhance P acquisition by the potato crop. The aim of this study was to evaluate the potential of phosphocompost application as a cheaper alternative P-source for potato production. The experiment was conducted on Mondial and Valor… potato cultivars at the University of Limpopo Syferkuil Experimental farm in 2015 and 2016. Poultry (PM) and cattle manure (CM)-based phospho-compost mix ratios of 8:2 and 7:3 were applied at 0, 20, 40, 80 and 120 kg P/ha. The trial was laid out in a split plot arrangement fitted into a randomised complete block design with treatments replicated three times. Results indicated statistically significant effects of phospho-compost types on soil pH and available P content at both flowering and harvesting growth stages in 2015 and 2016 with the higher available P content found in the PM-based phospho-composts. In both seasons, highly significant differences in fresh and dry leaf samples among phospho-compost types were obtained. Highly significant season x compost type interaction effects were also recorded on leaf biomass as well as the 2015 tuber weight, with highest tuber weight obtained in plots that received PM7:3-based phospho-compost at 80 t/ha rate. Notwithstanding the non-significant effect of compost type on tuber yield in 2016, higher yield was obtained from PM8:2. Although the grading of tubers showed no significant response to phospho-compost application; the difference between small and medium tubers obtained from 2016 trial was significantly affected by phosphocompost application rates. The CM8:2 mix ratio gave the highest baby tubers (16.87%) while PM7:3 mix ratio gave the highest (36.32%) medium tubers. The grading of the potato tubers revealed a mostly class 1 dominated by baby, small and medium size tubers in the 2015 harvest while the 2016 harvest was also mostly class 1 but dominated by small, medium and large-small size tubers. Tuber size and class were vi most favored by the PM-based phospho-compost applications in both planting seasons. None of phospho-compost types and application rates had significant effect on the measured nutrient concentrations of both plant parts. However, the differences in nutrient concentrations across seasons and plant parts were significant except for Ca. The measure tissue P concentration from the 2016 trial was within the required range suggesting that phospho-compost utilization, particularly the poultry manure-based, in potato production can be beneficial in addressing P deficiency. The PM8:2 mixed ratio resulted in increased soil available P content, potato tuber yield in 2016 and the P concentration across the two plant parts evaluated. The concentration of soil available P and tissue P showed increases with higher application rates albeit non-significance. Future research on the optimum application rate is suggested on a wide range of soils for the various phospho-compost types. / Potato SA and the National Research Foundation (NRF)
4

Poultry Litter Ash as an Alternative Fertilizer Source for Corn

Ervin, Clara 12 November 2019 (has links)
Poultry litter ash (PLA) is a co-product from manure-to-energy systems that originated in response to increased poultry litter (PL) volumes generated in concentrated poultry production regions. Investigating PLA as a crop fertilizer is an alternative solution to balancing poultry and crop regional nutrient cycling in the Commonwealth of Virginia. As the expanding world population places pressure on the poultry industry to meet consumption demands, increased PL production presents an obstacle to identify alternative uses for increased volumes. Currently, Virginia produces 44 million broilers with PL produced predominately in the Shenandoah Valley and Eastern Shore. Likewise, a growing world population places pressure on crop production areas and subsequently finite natural resources used for crop fertilization. Poultry litter ash is an alternative phosphorus (P) and potassium (K) source enhancing transportation logistics, repurposing PL nutrients, and offers dual purpose as a fertilizer and an energy source when compared to PL. Three PLA products [(fluidized bed bulk (FB Bulk), fluidized bed fly (FB Fly), and combustion Mix (CMix)], two manufactured co-products [(granulated poultry litter ash (GPLA), and ash coated urea (ACU)] were evaluated as P, K, and N sources for corn (Zea Mays L.) production in comparison to industry fertilizers [(PL, triple superphosphate (TSP), muriate of potash (KCL), and urea). A comprehensive examination of elemental composition, P speciation, P and K solubility, improved functionality into granulized forms, and field testing were conducted to discern PLA potential as an alternative fertilizer source. Poultry litter ash products were evaluated by total elemental analysis, backscatter-electron dispersive (BSED) microscopy, and X-ray absorption near edge structure (XANES) spectroscopy. Poultry litter ash elemental concentrations were highly variable ranging from 50.6 to 102.0 g P kg -1 and 62.6 to 120.0 g K kg -1 and were comparatively higher than PL concentrations. Phosphorus structures that provided and controlled P solubility were Ca and Ca-Mg-phosphate compounds. Spectroscopy confirmed Ca structures as predominately monetite (dicalcium phosphate anhydrous; CaHPO4; log K ̊ 0.30) and brushite (dicalcium phosphate dihydrate; CaHPO4.2H20; 0.63 log K ̊ ) species that were supported by BSED and elemental stoichiometric ratios (Ca:P; 1.12 to 1.71:1). Additionally, GPLA acidified from FB Fly had higher brushite and monetite percentages described by spectra models, translating into a more soluble Ca-phosphate species when compared to FB Fly original P species. Granulated poultry litter acidulation trials successfully identified a desired granulation point of 29% (14.5 g acid to 50 g PLA) phosphoric acid (75% H3PO4) acidulation. Acidulation dose response relationships created simple linear regression (SLR) equations that sufficiently (R2 > 0.80) described changes in total measurable P and water soluble P, pH, and exothermic reaction temperatures to increasing H3PO4 acidulation. Solubility tests included: sequential extraction, particle size effect on solubility, carbon effect on water soluble P, and Mehlich-1 extraction of PLA sources that confirmed decreased P solubility. A majority PLA P was found in bound plant unavailable fractions (87.7 to 97.7% P of total P). Granulated poultry litter ash had improved P plant available P of 36.0% P of total P. Carbon (C) effects on PLA P were examined by ashing PLA samples in a muffle furnace at 550 ̊C. Differences in total carbon content negatively impacted FB Bulk and CMix total P (1.30 and 4.56 g P kg -1); however, muffle furnace temperatures increased FB Fly total P by 6.74 g P kg -1. All fertilizer products were investigated under field conditions in separate P, K and N corn studies across Virginia coastal plain soils to determine fertilizer effects on corn plant parameters [(most mature leaf (V6), corn ear leaf (R1), and grain (R6)]. Poultry litter P treatments, averaged over rate, recorded highest yield in both years. At eight of nine field sites, FB Bulk resulted in numerically or significantly higher Mehlich-1 concentrations than other P sources post-harvest. Although Mehlich-1 P increased, yield and plant parameters did not; which leads to the conclusion that PLA sources increased soil residual P that did not translate into immediate plant availability recorded within a growing season. Across plant efficacy parameters examined, PLA K is a comparable nutrient source and improved plant parameters when compared to control. Eighteen out of twenty-one plant parameters examined found similar ACU and urea effects on N concentrations. Therefore, ACU is a comparable N source to urea. When compared to industry fertilizer sources, we concluded that PLA is a slowly available P source, decreased P availability negatively affected early plant growth, K is a comparable nutrient source and improved plant parameters compared to control, and ACU effectively provided N to maintain sufficient corn growth. In conclusion, PLA co-products serve as a densified nutrient source that may provide plant available nutrients if processed to aid in nutrient distribution to grain producing areas. / Doctor of Philosophy / Poultry litter ash (PLA) is a co-product from manure-to-energy systems that originated in response to increased poultry litter (PL) volumes generated in concentrated poultry production regions. Investigating PLA as an alternative crop fertilizer is essential to balancing poultry and crop regional nutrient cycling in the Commonwealth of Virginia. As the expanding world population places pressure on the poultry industry to meet consumption demands, heightened PL production presents an obstacle to identify alternative uses for increased volumes. Currently, Virginia produces 44,683,904 broilers with PL produced predominately in the Shenandoah Valley and Eastern Shore. Likewise, a growing world population places pressure on crop production areas and subsequently finite natural resources used for fertilization vital to maintaining crop yields. Poultry litter ash, a co-product from manure-to-energy systems, is an alternative phosphorus (P) and potassium (K) source enhancing transportation logistics, repurposing PL nutrients, and offers dual purpose as a fertilizer and an energy source when compared to PL. In this dissertation, three PLA products [(fluidized bed bulk (FB Bulk), fluidized bed fly (FB Fly), and combustion Mix (CMix)], two manufactured co-products [(granulated poultry litter ash (GPLA), and ash coated urea (ACU)] were evaluated as P, K, and N source for corn (Zea Mays L.) production in comparison to industry fertilizers (PL, triple superphosphate (TSP), muriate of potash (KCL), and urea). Each of the following chapters provides a comprehensive examination of the following topics: elemental composition, P speciation, P and K solubility, improved functionality into granulized forms, and field testing designed to provide parameters to conclude PLA potential as an alternative P, K and N source. In the second chapter, PLA products were evaluated by total elemental analysis, backscatter-electron dispersive (BSED) microscopy, and X-ray absorption near edge structure (XANES) spectroscopy. Poultry litter ash elemental concentrations are highly variable and are comparatively higher than PL concentrations. Phosphorus structure and species identified Ca as the primary element controlling P structure and subsequent solubility. The third component of this dissertation is granulation trials investigating phosphoric acid effects on granulizing and increasing total and water soluble P. Our results identified 29% (14.5 g acid to 50 g PLA) phosphoric acid acidulation for desired granule size. The third dissertation component examines PLA solubility. The results demonstrated PLA decreased P water solubility when compared to industry fertilizer sources. Granulated poultry litter ash demonstrated improved P plant availability due to the granulation process. The final and fourth dissertation components investigated PLA sources under field conditions in separate P, K and N corn studies across Virginia coastal plain soils to determine fertilizer effects on corn plant parameters. Minority of plant parameters tested revealed P control yielded numerically higher P concentrations than PLA P sources tested. Poultry litter P treatments, averaged over rate, recorded highest yield in both years. At eight of nine field sites, FB Bulk resulted in numerically or significantly higher Mehlich-1 concentrations than other P sources post-harvest. Although Mehlich-1 P concentrations increased, yield and plant parameters did not; which leads to the conclusion that PLA sources increased soil residual P that did not translate into immediate plant availability recorded within a growing season. Across plant efficacy parameters examined, PLA K is a comparable nutrient source and improved plant parameters when compared to controls. The majority of plant parameters examined found similar ACU and urea effects on N concentrations. Therefore, ACU is a comparable N source to urea. When compared to industry fertilizer sources, field results concluded that PLA is a slowly available P source, decreased P availability negatively affected early plant growth, K is a comparable nutrient source and improve plant parameters compared to control, ACU effectively provides N to maintain sufficient corn growth. In conclusion, PLA co-products serve as a densified nutrient source that may provide plant available nutrients if processed to aid in nutrient distribution to grain producing areas.
5

Phosphorus mass balance for hypertrophic Grand Lake St. Marys, Ohio

Taylor, Astrea 28 September 2012 (has links)
No description available.

Page generated in 0.0377 seconds