• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 77
  • 77
  • 12
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Science and applications of III-V graded anion metamorphic buffers on INP substrates

Lin, Yong, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 178-188).
52

Tintas intumescentes com propriedades anticorrosivas formuladas com compostos vegetais para proteção do aço

Sá, Stéphanie Cardoso de January 2017 (has links)
As tintas intumescentes vêm se tornando uma ótima alternativa para a proteção do aço contra o fogo. No entanto, o aço estrutural é aplicado em diversos setores da indústria, incluindo plataformas offshore de petróleo e gás e refinarias petroquímicas. Estas estruturas de alto desempenho ficam expostas a ambientes agressivos, o que torna necessário o desenvolvimento de tintas capazes de proteger o aço. Neste trabalho, foram preparadas tintas intumescentes epóxi formuladas com pó de gengibre e com casca de café como fonte de carbono e com trifenil fosfato (TPP) e fosfato de zinco (FZn) como fonte de fósforo. O objetivo principal deste trabalho foi desenvolver um sistema intumescente contendo compostos vegetais eficiente na proteção contra o fogo e capaz de proteger o substrato metálico contra a corrosão em ambiente salino. A avaliação foi realizada através de ensaio de resistência ao fogo (antes e após imersão em NaCl 3,5%), análise termogravimétrica (TGA), espectroscopia no infravermelho (FTIR), viscosidade Brookfield, aderência, ensaio estático de imersão, microscopia óptica (MO), microscopia eletrônica de varredura (MEV), difração de raios-X (DRX), pirólise acoplada à cromatografia gasosa e à espectrometria de massas (Py-GC/MS), espectroscopia de impedância eletroquímica (EIE), metalografia e microdureza Vickers. Os compostos vegetais apresentaram potencial de aplicação como fonte de carbono em sistemas intumescentes, enquanto que o FZn foi eficiente substituindo o TPP como fonte de fósforo. O sistema contendo gengibre e TPP apresentou os melhores resultados gerais, mantendo o fenômeno de intumescência após imersão em solução salina e apresentando a melhor proteção contra a corrosão dentre as amostras de tinta intumescente. Por fim, o revestimento contendo TPP apresentou propriedades anticorrosivas superiores ao FZn na aplicação em sistemas intumescentes. / The intumescent coating have become a great alternative for the protection of steel against fire. However, structural steel is applied in several industry sectors, including offshore oil and gas platforms and petrochemical refineries. These high performance structures are exposed to aggressive environments, which makes it necessary to develop coatings capable of protecting steel. In this work, epoxy intumescent coatings formulated with ginger powder and coffee husk as carbon source and with triphenyl phosphate (TPP) and zinc phosphate (ZnP) as phosphorus source were prepared. The main objective of this work was to develop an intumescent system containing vegetable compounds efficient in fire protection and able to protect the metal substrate against corrosion in saline environment. The evaluation was performed by fire resistance test (before and after immersion in NaCl 3.5%), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR), Brookfield viscosity, adhesion tests, static immersion test, optical microscopy (OM), Scanning electron microscopy (SEM), X-ray diffraction (XRD), pyrolysis coupled to gas chromatography and mass spectrometry (Py-GC / MS), electrochemical impedance spectroscopy (EIS), metallography and Vickers microhardness. Vegetable compounds presented potential as a carbon source in intumescent systems, while ZnP was efficient replacing TPP as a source of phosphorus. The system containing ginger and TPP presented the best overall results, maintaining the intumescence phenomenon after immersion in saline solution and presenting the best protection against corrosion among the intumescent coating samples. Finally, the coating containing TPP presented anticorrosive properties superior to FZn in the application in intumescent systems.
53

Disponibilidade de Po-210 na utilização do fosfogesso na agricultura / Availability of sup(210)Po present in phosphogypsum used in agriculture

GROPPO, GUILHERME H. 19 December 2014 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2014-12-19T17:47:33Z No. of bitstreams: 0 / Made available in DSpace on 2014-12-19T17:47:33Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
54

Tintas intumescentes com propriedades anticorrosivas formuladas com compostos vegetais para proteção do aço

Sá, Stéphanie Cardoso de January 2017 (has links)
As tintas intumescentes vêm se tornando uma ótima alternativa para a proteção do aço contra o fogo. No entanto, o aço estrutural é aplicado em diversos setores da indústria, incluindo plataformas offshore de petróleo e gás e refinarias petroquímicas. Estas estruturas de alto desempenho ficam expostas a ambientes agressivos, o que torna necessário o desenvolvimento de tintas capazes de proteger o aço. Neste trabalho, foram preparadas tintas intumescentes epóxi formuladas com pó de gengibre e com casca de café como fonte de carbono e com trifenil fosfato (TPP) e fosfato de zinco (FZn) como fonte de fósforo. O objetivo principal deste trabalho foi desenvolver um sistema intumescente contendo compostos vegetais eficiente na proteção contra o fogo e capaz de proteger o substrato metálico contra a corrosão em ambiente salino. A avaliação foi realizada através de ensaio de resistência ao fogo (antes e após imersão em NaCl 3,5%), análise termogravimétrica (TGA), espectroscopia no infravermelho (FTIR), viscosidade Brookfield, aderência, ensaio estático de imersão, microscopia óptica (MO), microscopia eletrônica de varredura (MEV), difração de raios-X (DRX), pirólise acoplada à cromatografia gasosa e à espectrometria de massas (Py-GC/MS), espectroscopia de impedância eletroquímica (EIE), metalografia e microdureza Vickers. Os compostos vegetais apresentaram potencial de aplicação como fonte de carbono em sistemas intumescentes, enquanto que o FZn foi eficiente substituindo o TPP como fonte de fósforo. O sistema contendo gengibre e TPP apresentou os melhores resultados gerais, mantendo o fenômeno de intumescência após imersão em solução salina e apresentando a melhor proteção contra a corrosão dentre as amostras de tinta intumescente. Por fim, o revestimento contendo TPP apresentou propriedades anticorrosivas superiores ao FZn na aplicação em sistemas intumescentes. / The intumescent coating have become a great alternative for the protection of steel against fire. However, structural steel is applied in several industry sectors, including offshore oil and gas platforms and petrochemical refineries. These high performance structures are exposed to aggressive environments, which makes it necessary to develop coatings capable of protecting steel. In this work, epoxy intumescent coatings formulated with ginger powder and coffee husk as carbon source and with triphenyl phosphate (TPP) and zinc phosphate (ZnP) as phosphorus source were prepared. The main objective of this work was to develop an intumescent system containing vegetable compounds efficient in fire protection and able to protect the metal substrate against corrosion in saline environment. The evaluation was performed by fire resistance test (before and after immersion in NaCl 3.5%), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR), Brookfield viscosity, adhesion tests, static immersion test, optical microscopy (OM), Scanning electron microscopy (SEM), X-ray diffraction (XRD), pyrolysis coupled to gas chromatography and mass spectrometry (Py-GC / MS), electrochemical impedance spectroscopy (EIS), metallography and Vickers microhardness. Vegetable compounds presented potential as a carbon source in intumescent systems, while ZnP was efficient replacing TPP as a source of phosphorus. The system containing ginger and TPP presented the best overall results, maintaining the intumescence phenomenon after immersion in saline solution and presenting the best protection against corrosion among the intumescent coating samples. Finally, the coating containing TPP presented anticorrosive properties superior to FZn in the application in intumescent systems.
55

Disponibilidade de Po-210 na utilização do fosfogesso na agricultura / Availability of sup(210)Po present in phosphogypsum used in agriculture

GROPPO, GUILHERME H. 19 December 2014 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2014-12-19T17:47:33Z No. of bitstreams: 0 / Made available in DSpace on 2014-12-19T17:47:33Z (GMT). No. of bitstreams: 0 / As indústrias de fertilizantes fosfatados no Brasil são responsáveis pela produção anual de 5,5x106 toneladas de um subproduto denominado fosfogesso (PG), que pode ser considerado como TENORM (Technologically Enhanced Naturally Occurring Radioactive Material) e vem sendo estocado em pilhas à céu aberto ao lado das instalações produtoras. Com a presença de radionuclídeos no fosfogesso, faz-se necessário certa restrição para seu uso na agricultura. A Agência Regulatória Brasileira - CNEN estabeleceu limites de 1 Bq g-1 para 226Ra e 228Ra para o uso de fosfogesso na agricultura. No Brasil, esse resíduo vem sendo utilizado como condicionador de solo. Para a utilização segura do PG na agricultura é importante estimar qual poder de lixiviação dos radionuclídeos presente no mesmo. O objetivo do presente trabalho é avaliar a disponibilidade do 210Po na utilização do PG na agricultura como condicionador de solo. Para isso, foi realizado experimento com colunas em PVC preenchidas com amostras de solo argiloso, solo arenoso e PG. As colunas foram lixiviadas com água deionizada. A técnica usada para a determinação de 210Po nas amostras de solo, solo + PG e PG foi a espectrometria alfa que se adéqua para a medição da concentração de 210Po em amostras ambientais, além de apresentar alta eficiência e alta sensibilidade. Para que se pudesse avaliar a disponibilidade de 210Po, a concentração obtida no lixiviado foi comparada com a concentração total de 210Po nas amostras de solo, solo + fosfogesso e fosfogesso. Os resultados obtidos para concentração de atividade de 210Po nas amostras de solo argiloso foram aproximadamente 2,5 vezes maiores do que as amostras de solo arenoso. Para as amostras de fosfogesso os resultados para concentração de atividade de 210Po variaram de 155±11 a 346±7 Bq Kg-1. Conclui-se que mesmo com a adição do fosfogesso no solo, as amostras não apresentaram um aumento na concentração final do radionuclídeo estudado. Pode-se concluir que os radionuclídeos presentes no fosfogesso não estão disponíveis no lixiviado. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
56

The preparation and study of alkylated phosphazenes

Jackson, Logan A. January 1986 (has links)
The reaction of the model compound hexachlorocyclotriphosphazene (N₃P₃Cl₆) with various organometallic reagents have been studied in some detail. These reactions are quite complex yielding substitution products as well as degradation products. The reaction of alkyl Grignard reagents, in the presence of a copper complex ((n-Bu₃PCuI)₄), have been studied and produce good yields of mono- and di-alkylated chlorocyclotriphosphazenes. This method is limited in that higher substitution products can not be obtained. The reaction of trimethylaluminum (TMA) with (N₃P₃Cl₆) was examined and found to yield the fully substituted hexamethylcyclotriphosphazene (N₃P₃(CH₃)₆) in modest yield (40 %). The study of this reaction, with respect to time allowed for the determination of the substitution pathway and the preparation of two new methylated chlorocyclotriphosphazenes. It was then possible to prepare a nearly complete set of methylated chlorocyclotriphosphazenes (N₃P₃(CH₃)<sub>n</sub>Cl<sub>6-n</sub>) using this method and the Grignard route. The reactions of other alkylaluminum reagents were also examined and are discussed. The effects of the complexation of TMA with the homologous series was next examined using ¹H, and ³¹P NMR. The results for these investigations indicate that the overall electron donating ablity of the phosphazene ring increased with increasing methyl substitution. Variable temperature NMR studies allowed for the determination of the sites of complexation and their relative strengths with respect to the number of methyl groups on the phosphazene ring. / Ph. D. / incomplete_metadata
57

The effect of methyl groups on nucleophilic substitution reactions of chlorocyclotriphosphazenes

Williams, Kenneth Bruce January 1985 (has links)
The reactions of methyl-substituted chlorocyclotriphosphazenes with aryl Grignard reagents and with bifunctional amines, aminoalcohols, and alkoxides were investigated. The characterization data for the compounds formed in the reactions of monomethylpentachlorocyclotriphosphazene and the Grignard reagents were found to be informative with respect to the extent and nature of the interaction between the phosphazene ring and its exocyclic substituents. This interaction was found to be responsible for significant effects on the reactions of the phosphazene ring with nucleophiles. The reactions of the bifunctional nucleophiles were found to be useful probes of the reactivity of the phosphazene ring. Specifically, a single methyl group is found to activate the chlorine on the same phosphorus atom, while a pair of geminally substituted methyl groups is found to deactivate the chlorine atoms on a different phosphorus atom. The results allow a new interpretation of the substitution patterns of various nucleophiles on chlorocyclotriphosphazenes. / Ph. D. / incomplete_metadata
58

Quantum Chemical Studies of Thermochemistry, Kinetics and Molecular Structure.

Haworth, Naomi Louise January 2003 (has links)
This thesis is concerned with a range of chemical problems which are amenable to theoretical investigation via the application of current methods of computational quantum chemistry. These problems include the calculation of accurate thermochemical data, the prediction of reaction kinetics, the study of molecular potential energy surfaces, and the investigation of molecular structures and binding. The heats of formation (from both atomisation energies and isodesmic schemes) of a set of approximately 120 C1 and C2 fluorocarbons and oxidised fluorocarbons (along with C3F6 and CF3CHFCF2) were calculated with the Gaussian-3 (G3) method (along with several approximations thereto). These molecules are of importance in the flame chemistry of 2-H-heptafluoropropane, which has been proposed as a potential fire retardant with which to replace chloro- and bromofluorocarbons (CFC�s and BFC�s). The calculation of the data reported here was carried out in parallel with the modelling studies of Hynes et al.1-3 of shock tube experiments on CF3CHFCF3 and on C3F6 with either hydrogen or oxygen atoms. G3 calculations were also employed in conjunction with the experimental work of Owens et al.4 to describe the pyrolysis of CFClBr2 (giving CFCl) at a radiation wavelength of 265 nm. The theoretical prediction of the dissociation energy of the two C-Br bonds was found to be consistent with the energy at which carbene production was first observed, thus supporting the hypothesis that the pyrolysis releases two bromine radicals (rather than a Br2 molecule). On the basis of this interpretation of the experiments, the heat of formation of CFClBr2 is predicted to be 184 � 5 kJ mol-1, in good agreement with the G3 value of 188 � 5 kJ mol-1. Accurate thermochemical data was computed for 18 small phosphorus containing molecules (P2, P4, PH, PH2, PH3, P2H2, P2H4, PO, PO2, PO3, P2O, P2O2, HPO, HPOH, H2POH, H3PO, HOPO and HOPO2), most of which are important in the reaction model introduced by Twarowski5 for the combustion of H2 and O2 in the presence of phosphine. Twarowski reported that the H + OH recombination reaction is catalysed by the combustion products of PH3 and proposed two catalytic cycles, involving PO2, HOPO and HOPO2, to explain this observation. Using our thermochemical data we computed the rate coefficients of the most important reactions in these cycles (using transition state and RRKM theories) and confirmed that at 2000K both cycles have comparable rates and are significantly faster than the uncatalysed H + OH recombination. The heats of formation used in this work on phosphorus compounds were calculated using the G2, G3, G3X and G3X2 methods along with the far more extensive CCSD(T)/CBS type scheme. The latter is based on the evaluation of coupled cluster energies using the correlation consistent triple-, quadruple- and pentuple-zeta basis sets and extrapolation to the complete basis set (CBS) limit along with core-valence correlation corrections (with counterpoise corrections for phosphorus atoms), scalar relativistic corrections and spin-orbit coupling effects. The CCSD(T)/CBS results are consistent with the available experimental data and therefore constitute a convenient set of benchmark values with which to compare the more approximate Gaussian-n results. The G2 and G3 methods were found to be of comparable accuracy, however both schemes consistently underestimated the benchmark atomisation energies. The performance of G3X is significantly better, having a mean absolute deviation (MAD) from the CBS results of 1.8 kcal mol-1, although the predicted atomisation energies are still consistently too low. G3X2 (including counterpoise corrections to the core-valence correlation energy for phosphorus) was found to give a slight improvement over G3X, resulting in a MAD of 1.5 kcal mol-1. Several molecules were also identified for which the approximations underlying the Gaussian-n methodologies appear to be unreliable; these include molecules with multiple or strained P-P bonds. The potential energy surface of the NNH + O system was investigated using density functional theory (B3LYP/6-31G(2df,p)) with the aim of determining the importance of this route in the production of NO in combustion reactions. In addition to the standard reaction channels, namely decomposition into NO + NH, N2 + OH and H + N2O via the ONNH intermediate, several new reaction pathways were also investigated. These include the direct abstraction of H by O and three product channels via the intermediate ONHN, giving N2 + OH, H + N2O and HNO + N. For each of the species corresponding to stationary points on the B3LYP surface, valence correlated CCSD(T) calculations were performed with the aug-cc-pVxZ (x = Q, 5) basis sets and the results extrapolated to the complete basis set limit. Core-valence correlation corrections, scalar relativistic corrections and spin orbit effects were also included in the resulting energetics and the subsequent calculation of thermochemical data. Heats of formation were also calculated using the G3X method. Variational transition state theory was used to determine the critical points for the barrierless reactions and the resulting B3LYP energetics were scaled to be compatible with the G3X and CCSD(T)/CBS values. As the results of modelling studies are critically dependent on the heat of formation of NNH, more extensive CCSD(T)/CBS calculations were performed for this molecule, predicting the heat of formation to be 60.6 � 0.5 kcal mol-1. Rate coefficients for the overall reaction processes were obtained by the application of multi-well RRKM theory. The thermochemical and kinetic results thus obtained were subsequently used in conjunction with the GRIMech 3.0 reaction data set in modelling studies of combustion systems, including methane / air and CO / H2 / air mixtures in completely stirred reactors. This study revealed that, contrary to common belief, the NNH + O channel is a relatively minor route for the production of NO. The structure of the inhibitor Nd-(N'-Sulfodiaminophosphinyl)-L-ornithine, PSOrn, and the nature of its binding to the OTCase enzyme was investigated using density functional (B3LYP) theory. The B3LYP/6-31G(d) calculations on the model compound, PSO, revealed that, while this molecule could be expected to exist in an amino form in the gas phase, on complexation in the active site of the enzyme it would be expected to lose two protons to form a dinegative imino tautomer. This species is shown to bind strongly to two H3CNHC(NH2)2+ moieties (model compounds for arginine residues), indicating that the strong binding observed between inhibitor and enzyme is partially due to electrostatic interactions as well as extensive hydrogen bonding (both model Arg+ residues form hydrogen bonds to two different sites on PSO). Population analysis and hydrogen bonding studies have revealed that the intramolecular bonding in this species consists of either single or semipolar bonds (that is, S and P are not hypervalent) and that terminal oxygens (which, being involved in semipolar bonds, carry negative charges) can be expected to form up to 4 hydrogen bonds with residues in the active site. In the course of this work several new G3 type methods were proposed, including G3MP4(SDQ) and G3[MP2(Full)], which are less expensive approximations to G3, and G3X2, which is an extension of G3X designed to incorporate additional electron correlation. As noted earlier, G3X2 shows a small improvement on G3X; G3MP4(SDQ) and G3[MP2(Full)], in turn, show good agreement with G3 results, with MAD�s of ~ 0.4 and ~ 0.5 kcal mol-1 respectively. 1. R. G. Hynes, J. C. Mackie and A. R. Masri, J. Phys. Chem. A, 1999, 103, 5967. 2. R. G. Hynes, J. C. Mackie and A. R. Masri, J. Phys. Chem. A, 1999, 103, 54. 3. R. G. Hynes, J. C. Mackie and A. R. Masri, Proc. Combust. Inst., 2000, 28, 1557. 4. N. L. Owens, Honours Thesis, School of Chemistry, University of Sydney, 2001. 5. A. Twarowski, Combustion and Flame, 1995, 102, 41.
59

Tetrakis(2,6-diisopropylphenyl)diphosphine and related compounds : an electrochemical and EPR spectroscopic study of radical cations

Taghavikish, Mona January 2012 (has links)
In this thesis the synthesis and full characterization of a new bulky diphosphine, tetrakis-(2,6-diisopropylphenyl)diphosphine, are described. This compound displays facile oxidation and a thorough investigation of its redox properties has been studied by combining solution electrochemical techniques such as cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry, with spectroscopic methods such as electron paramagnetic resonance (EPR) and Simultaneous Electrochemical Electron Paramagnetic Resonance (SEEPR) spectroscopy over a wide temperature range. Density functional theory (DFT) calculations were carried out to aid in structural characterization of the radical cation that is produced and to provide computed hyperfine splitting (HFS) constants for comparison with experimental results. For comparison to this species with bulky aromatic substituents, similar studies were conducted that have identified the previously unreported radical cation of tetrakis-tert-butyldiphosphine with a bulky aliphatic substituent that provides even higher steric pressure than the 2,6-diisopropylphenyl group. DFT calculations are reported, as is full characterization with fluid and frozen-solution EPR spectroscopy. Further CV and EPR (SEEPR) studies are reported that led to the identification of radical cations of tris(2,6-diisopropylphenyl)arsine and bis(2,4,6-triisopropylphenyl)(2,6-diisopropylphenyl)phosphine. DFT calculations are reported, as is full characterization with fluid and frozen-solution EPR spectroscopy. / xix, 172 leaves : ill (some col.) ; 29 cm
60

Quantum Chemical Studies of Thermochemistry, Kinetics and Molecular Structure.

Haworth, Naomi Louise January 2003 (has links)
This thesis is concerned with a range of chemical problems which are amenable to theoretical investigation via the application of current methods of computational quantum chemistry. These problems include the calculation of accurate thermochemical data, the prediction of reaction kinetics, the study of molecular potential energy surfaces, and the investigation of molecular structures and binding. The heats of formation (from both atomisation energies and isodesmic schemes) of a set of approximately 120 C1 and C2 fluorocarbons and oxidised fluorocarbons (along with C3F6 and CF3CHFCF2) were calculated with the Gaussian-3 (G3) method (along with several approximations thereto). These molecules are of importance in the flame chemistry of 2-H-heptafluoropropane, which has been proposed as a potential fire retardant with which to replace chloro- and bromofluorocarbons (CFC�s and BFC�s). The calculation of the data reported here was carried out in parallel with the modelling studies of Hynes et al.1-3 of shock tube experiments on CF3CHFCF3 and on C3F6 with either hydrogen or oxygen atoms. G3 calculations were also employed in conjunction with the experimental work of Owens et al.4 to describe the pyrolysis of CFClBr2 (giving CFCl) at a radiation wavelength of 265 nm. The theoretical prediction of the dissociation energy of the two C-Br bonds was found to be consistent with the energy at which carbene production was first observed, thus supporting the hypothesis that the pyrolysis releases two bromine radicals (rather than a Br2 molecule). On the basis of this interpretation of the experiments, the heat of formation of CFClBr2 is predicted to be 184 � 5 kJ mol-1, in good agreement with the G3 value of 188 � 5 kJ mol-1. Accurate thermochemical data was computed for 18 small phosphorus containing molecules (P2, P4, PH, PH2, PH3, P2H2, P2H4, PO, PO2, PO3, P2O, P2O2, HPO, HPOH, H2POH, H3PO, HOPO and HOPO2), most of which are important in the reaction model introduced by Twarowski5 for the combustion of H2 and O2 in the presence of phosphine. Twarowski reported that the H + OH recombination reaction is catalysed by the combustion products of PH3 and proposed two catalytic cycles, involving PO2, HOPO and HOPO2, to explain this observation. Using our thermochemical data we computed the rate coefficients of the most important reactions in these cycles (using transition state and RRKM theories) and confirmed that at 2000K both cycles have comparable rates and are significantly faster than the uncatalysed H + OH recombination. The heats of formation used in this work on phosphorus compounds were calculated using the G2, G3, G3X and G3X2 methods along with the far more extensive CCSD(T)/CBS type scheme. The latter is based on the evaluation of coupled cluster energies using the correlation consistent triple-, quadruple- and pentuple-zeta basis sets and extrapolation to the complete basis set (CBS) limit along with core-valence correlation corrections (with counterpoise corrections for phosphorus atoms), scalar relativistic corrections and spin-orbit coupling effects. The CCSD(T)/CBS results are consistent with the available experimental data and therefore constitute a convenient set of benchmark values with which to compare the more approximate Gaussian-n results. The G2 and G3 methods were found to be of comparable accuracy, however both schemes consistently underestimated the benchmark atomisation energies. The performance of G3X is significantly better, having a mean absolute deviation (MAD) from the CBS results of 1.8 kcal mol-1, although the predicted atomisation energies are still consistently too low. G3X2 (including counterpoise corrections to the core-valence correlation energy for phosphorus) was found to give a slight improvement over G3X, resulting in a MAD of 1.5 kcal mol-1. Several molecules were also identified for which the approximations underlying the Gaussian-n methodologies appear to be unreliable; these include molecules with multiple or strained P-P bonds. The potential energy surface of the NNH + O system was investigated using density functional theory (B3LYP/6-31G(2df,p)) with the aim of determining the importance of this route in the production of NO in combustion reactions. In addition to the standard reaction channels, namely decomposition into NO + NH, N2 + OH and H + N2O via the ONNH intermediate, several new reaction pathways were also investigated. These include the direct abstraction of H by O and three product channels via the intermediate ONHN, giving N2 + OH, H + N2O and HNO + N. For each of the species corresponding to stationary points on the B3LYP surface, valence correlated CCSD(T) calculations were performed with the aug-cc-pVxZ (x = Q, 5) basis sets and the results extrapolated to the complete basis set limit. Core-valence correlation corrections, scalar relativistic corrections and spin orbit effects were also included in the resulting energetics and the subsequent calculation of thermochemical data. Heats of formation were also calculated using the G3X method. Variational transition state theory was used to determine the critical points for the barrierless reactions and the resulting B3LYP energetics were scaled to be compatible with the G3X and CCSD(T)/CBS values. As the results of modelling studies are critically dependent on the heat of formation of NNH, more extensive CCSD(T)/CBS calculations were performed for this molecule, predicting the heat of formation to be 60.6 � 0.5 kcal mol-1. Rate coefficients for the overall reaction processes were obtained by the application of multi-well RRKM theory. The thermochemical and kinetic results thus obtained were subsequently used in conjunction with the GRIMech 3.0 reaction data set in modelling studies of combustion systems, including methane / air and CO / H2 / air mixtures in completely stirred reactors. This study revealed that, contrary to common belief, the NNH + O channel is a relatively minor route for the production of NO. The structure of the inhibitor Nd-(N'-Sulfodiaminophosphinyl)-L-ornithine, PSOrn, and the nature of its binding to the OTCase enzyme was investigated using density functional (B3LYP) theory. The B3LYP/6-31G(d) calculations on the model compound, PSO, revealed that, while this molecule could be expected to exist in an amino form in the gas phase, on complexation in the active site of the enzyme it would be expected to lose two protons to form a dinegative imino tautomer. This species is shown to bind strongly to two H3CNHC(NH2)2+ moieties (model compounds for arginine residues), indicating that the strong binding observed between inhibitor and enzyme is partially due to electrostatic interactions as well as extensive hydrogen bonding (both model Arg+ residues form hydrogen bonds to two different sites on PSO). Population analysis and hydrogen bonding studies have revealed that the intramolecular bonding in this species consists of either single or semipolar bonds (that is, S and P are not hypervalent) and that terminal oxygens (which, being involved in semipolar bonds, carry negative charges) can be expected to form up to 4 hydrogen bonds with residues in the active site. In the course of this work several new G3 type methods were proposed, including G3MP4(SDQ) and G3[MP2(Full)], which are less expensive approximations to G3, and G3X2, which is an extension of G3X designed to incorporate additional electron correlation. As noted earlier, G3X2 shows a small improvement on G3X; G3MP4(SDQ) and G3[MP2(Full)], in turn, show good agreement with G3 results, with MAD�s of ~ 0.4 and ~ 0.5 kcal mol-1 respectively. 1. R. G. Hynes, J. C. Mackie and A. R. Masri, J. Phys. Chem. A, 1999, 103, 5967. 2. R. G. Hynes, J. C. Mackie and A. R. Masri, J. Phys. Chem. A, 1999, 103, 54. 3. R. G. Hynes, J. C. Mackie and A. R. Masri, Proc. Combust. Inst., 2000, 28, 1557. 4. N. L. Owens, Honours Thesis, School of Chemistry, University of Sydney, 2001. 5. A. Twarowski, Combustion and Flame, 1995, 102, 41.

Page generated in 0.0434 seconds