Spelling suggestions: "subject:"photodarkening"" "subject:"phtodarkening""
1 |
Investigation of Ionizing-Radiation-Induced Photodarkening in Rare-Earth-Doped Optical Fiber Amplifier MaterialsFox, Brian Philip January 2013 (has links)
Motivated by an increasing demand for functionality and reliability of systems operating in harsh, ionizing-radiation environments, the core of the present research is an investigation of the response of rare-earth-doped, aluminosilicate fibers to ionizing radiation. These rare-earth-doped fibers, consisting of fibers doped with ions of erbium (Er³⁺) and ytterbium (Yb³⁺) designed for use in amplifier systems, reveal average specific losses in response to ⁶⁰Co gamma radiation to be in the range of 0.0285 - 0.193 dB/(m•krad(Si)) at wavelengths from 1300 nm to 1400 nm. An ionizing dose rate dependence was identified in which high dose rates of approximately 40 rad(Si)/s invariably lead to higher induced losses than lower dose rates of approximately 14 rad(Si)/s, indicating the possibility of complex radiation-related phenomena underlying the observed absorption. Data clearly show that Er³⁺-doped fibers are more sensitive to ionizing-radiation in comparison to Yb³⁺-doped fibers, while Er³⁺/Yb³⁺ co-doped fibers are found to be the least sensitive to radiation of all the fibers examined. Evidence of color center formation associated with the dopant aluminum is found in results of visible spectroscopy conducted on gamma-irradiated preform samples and on fibers flown in low-Earth orbit. Near infrared spectroscopic data is consistent with absorption derived from this dopant as well, with the interpretation of band-tailing from the visible portion of the spectrum. Evidence of the formation of a defect intrinsic to the silicate host matrix, the Non-Bridging Oxygen Hole Center (NBOHC), is also found following ionizing radiation of the optical fiber preforms. Since the observed ionizing-radiation-induced absorption is concentrated in the visible portion of the spectrum, the performance of actively operated rare-earth-doped amplifiers is largely impacted by the pump wavelength, which is located at higher energies within the near-infrared portion of the spectrum and therefore closer to the visible portion of the spectrum than the lasing wavelength. Experimental results stemming from rare-earth-doped amplifiers operated under ionizing radiation substantiate the importance of the pumping wavelength, and suggest the presence of cascaded pump photon absorption processes. Based on these results, pumping at longer wavelengths is advised to reduce the effect of color center absorption on this crucial aspect of active fiber amplifier operation.
|
2 |
Electric Transport of Rare-earth Metal Oxy-hydride Thin FilmsKazi, Suraya January 2021 (has links)
In this project, I investigate the photoconductivenature of photochromic rare-earth metal oxy hydrides (REMHO). Such materials have received increasingscientific attention since they show a color-neutralphotochromic effect that can be applied, e.g., in smartwindows or chromogenic devices. Photochromicmaterials reversibly turn opaque from transparentunder illumination with light of optical wavelength. Inrecent studies it was found that these materials alsoshow an instant decrease in resistivity whenilluminated which can be used in optical sensors. Tounderstand the nature of this photoconductive effect,I grew yttrium oxy hydride thin films by reactivemagnetron sputtering. I measured the resistivity forillumination from front and substrate side, opticaltransmission and compositions of the samples andrelated the results to photoconductivity. I show thatphotoconductivity is a bulk effect and not directlyrelated to photochromism. Samples that almost lostphotochromism due to aging, still show strongphotoconductivity. Moreover, it was observed that theresistance increased faster during bleaching for frontillumination than for back illumination.
|
3 |
Hollow core fibre-based gas discharge laser systems and deuterium loading of photonic crystal fibresBateman, Samuel January 2015 (has links)
Research towards the development of a gas-discharge fibre laser using noble gases, with target emission wavelengths in the mid-IR. Additional and separate work on gas treatment methods for managing the formation of photo-induced defects in silica glass.
|
Page generated in 0.0812 seconds