Spelling suggestions: "subject:"photometric invariant"" "subject:"photometrics invariant""
1 |
Méthodes robustes pour l'estimation d'illuminants et la prise en compte de la couleur en comparaison d'images / Robust methods for illuminant estimation and color image matchingMazin, Baptiste 28 March 2014 (has links)
Cette thèse traite de l’utilisation de la couleur en vision par ordinateur. Deux problèmes sont étudiés : - l’estimation d’illuminants, - la mise en correspondance de descripteurs locaux pour la comparaison d’images couleur. Les surfaces achromatiques renvoient un spectre lumineux ayant la même distribution fréquentielle que le spectre de l’illuminant. Les détecter permet donc de recouvrer l'illuminant. En supposant que l’ensemble des couleurs que peut prendre un illuminant est limité (équation de Planck), il est possible de sélectionner les pixels appartenant à une surface potentiellement grise. Une méthode de vote est alors appliquée, permettant de sélectionner un ou plusieurs illuminants. L’algorithme final possède de nombreux avantages : il est efficace, intuitif, ne nécessite pas de phase d’apprentissage et requiert peu de paramètres, qui s’avèrent stables. De plus, la méthode de vote permet de s’adapter aux cas où plusieurs sources lumineuses éclairent la scène photographiée. Les descripteurs locaux sont des outils puissants pour comparer les images. Cependant, le rôle de la couleur dans l’étape d’appariement a fait l’objet de peu d’études. Le problème principal que nous considérons ici est celui de l’apport de la couleur pour l’appariement de descripteurs locaux. Un usage local de la couleur permet-il de désambiguïser les situations où la luminance seule est insuffisante ? Et si oui, dans quelles proportions ? Nous proposons quatre descripteurs permettant de décrire de manière détaillée le contexte local de points clés dans l’optique de les apparier. Les expériences proposées montrent clairement l’apport de la couleur pour la mise en correspondance locale. / This thesis addresses the use of color in image processing and computer vision. Two problems are studied: - illuminant estimation, - local descriptors matching for color images comparison. Achromatic surfaces are defined as surfaces reflecting a spectrum with the same frequency dsitribution than the illuminant. Consequently, revovering these surfaces allows to estimate the illuminant. Assuming that the range of colors taken by an illuminant is limited (Planck equation), it is possible to select the pixels belonging to a potentially gray surface. A voting procedure is then applied to select one or more illuminants. The proposed algorithm has many advantages: it is effective, intuitive, does not rely on a learning phase and requires only few parameters. In addition, the voting procedure can be adapted to handle cases where multiple light sources of different colors illuminate the scene. Local descriptors are powerful tools to compare images. However, few studies concern the influence of color in the matching step. The main problem that we consider here is the contribution of the color matching of local descriptors. Does the local use of color allow to disambiguate situations where the luminance alone is insufficient ? And if so, how much? We propose four descriptors to precisely describe the local context of key points in the matching step. The main idea developed here is that accurate information can only be obtained by describing both the color distributions and transitions between colors. The many experiences presented clearly show the positive contribution of color to the reliability of the local matching.
|
Page generated in 0.0647 seconds