• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The metallicity distribution function of globular clusters systems through near-infrared photometry

Okoń, Wademar M. M. Harris, W. E. January 1900 (has links)
Thesis (Ph. D.)--McMaster University, 2006. / Supervisor: William E. Harris.
2

The effects of environment on radio-loud AGN activity in Stripe 82

Kolwa, Sthabile January 2016 (has links)
>Magister Scientiae - MSc / We investigate the link between environment and radiative accretion efficiency using a sample of 8946 radio-loud AGN detected at 1 − 2 GHz in the SDSS Stripe 82 region. We quantify their environments using the surface-density parameter, ƩN, which measures galaxy density based on distances to Nth nearest neighbours. Comparing Ʃ2 and Ʃ5 between AGN and control galaxies, we obtain relative densities that quantify the degree of galaxy clustering around each AGN. Using this, we examine the relation between density and the HERG-LERG dichotomy (accretion-modes) classified using a 1.4 GHz luminosity (L1.4GHz) threshold. Our results indicate that, in the low-redshift interval (0.1 < z < 0.2), LERGs occupy environments denser than the field. At intermediate redshifts (0.2 < z < 1.2), both LERGs and HERGs occupy regions denser than the field. Spearman’s rank tests show that correlations between density and L1.4GHz in both redshift intervals are weak. We conclude that the absence of a strong correlation is confirmation of the idea that galaxy density plays a more secondary role on AGN activity and also, accretion-mode classification (both measured using L1.4GHz). It is likely that the rate of gas accretion or properties of galactic-scale magnetic fields correlate more strongly with L1.4GHz, hence being primarily influential. / National Research Foundation (NRF)

Page generated in 0.0591 seconds