• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Point Cloud Registration using both Machine Learning and Non-learning Methods : with Data from a Photon-counting LIDAR Sensor

Boström, Maja January 2023 (has links)
Point Cloud Registration with data measured from a photon-counting LIDAR sensor from a large distance (500 m - 1.5 km) is an expanding field. Data measuredfrom far is sparse and have low detail, which can make the registration processdifficult, and registering this type of data is fairly unexplored. In recent years,machine learning for point cloud registration has been explored with promisingresults. This work compares the performance of the point cloud registration algorithm Iterative Closest Point with state-of-the-art algorithms, with data froma photon-counting LIDAR sensor. The data was provided by the Swedish Defense Research Agency (FOI). The chosen state-of-the-art algorithms were thenon-learning-based Fast Global Registration and learning-based D3Feat and SpinNet. The results indicated that all state-of-the-art algorithms achieve a substantial increase in performance compared to the Iterative Closest Point method. Allthe state-of-the-art algorithms utilize their calculated features to obtain bettercorrespondence points and therefore, can achieve higher performance in pointcloud registration. D3Feat performed point cloud registration with the highestaccuracy of all the state-of-the-art algorithms and ICP.
2

Deep Learning Semantic Segmentation of 3D Point Cloud Data from a Photon Counting LiDAR / Djupinlärning för semantisk segmentering av 3D punktmoln från en fotonräknande LiDAR

Süsskind, Caspian January 2022 (has links)
Deep learning has shown to be successful on the task of semantic segmentation of three-dimensional (3D) point clouds, which has many interesting use cases in areas such as autonomous driving and defense applications. A common type of sensor used for collecting 3D point cloud data is Light Detection and Ranging (LiDAR) sensors. In this thesis, a time-correlated single-photon counting (TCSPC) LiDAR is used, which produces very accurate measurements over long distances up to several kilometers. The dataset collected by the TCSPC LiDAR used in the thesis contains two classes, person and other, and it comes with several challenges due to it being limited in terms of size and variation, as well as being extremely class imbalanced. The thesis aims to identify, analyze, and evaluate state-of-the-art deep learning models for semantic segmentation of point clouds produced by the TCSPC sensor. This is achieved by investigating different loss functions, data variations, and data augmentation techniques for a selected state-of-the-art deep learning architecture. The results showed that loss functions tailored for extremely imbalanced datasets performed the best with regard to the metric mean intersection over union (mIoU). Furthermore, an improvement in mIoU could be observed when some combinations of data augmentation techniques were employed. In general, the performance of the models varied heavily, with some achieving promising results and others achieving much worse results.

Page generated in 0.065 seconds