• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analýza biologicky významných látek / Analysis of biological significant substances

Maděránková, Denisa January 2008 (has links)
Selected methods of Raman spectroscopy, like surface-enhanced Raman spectroscopy and single molecule Raman spectroscopy, are described in this diploma work. The basis of two methods for numerical modelling of optical properties of micro- and nanoparticles are prefaced. The methods are Discrete Dipole Approximation and Finite Difference Time Domain. Micro- and nanoparticles are used in surface enhanced Raman spectroscopy and other nanospectroscopic methods. Further, the main instrumentation needed for Raman spectroscopy is described. The first part of experimental section of this work is numerical modelling of photonic nanojet that occures behind dielectric microparticles. This phenomenon leads to a new technique of confocal microscopy with Raman spectra measuring. The second experimental section contains results of Raman spectra measurement with beta-carotene and surface-enhanced Raman spectra of beta-carotene in silver-sol solution.
2

Micro-nano-structuration de surface par renforcement local du flux électromagnétique / Micro-nano-structuring of the surface by a local amplification of the electromagnetic field

Shavdina, Olga 20 December 2016 (has links)
Cette thèse présente les résultats théoriques et expérimentaux de l’interaction entre une onde plane et une monocouche de particules sub-microniques sphériques/non sphériques transparentes au champ optique. Un renforcement local du champ optique sous la particule peut être observé, menant à la formation d’une concentration d’énergie appelée «nanojet photonique». Une étude théorique de la répartition du champ électromagnétique sous les microparticules et le choix des conditions optimales, nous a permis d’exploiter ce nanojet comme un outil de micro-nano-structuration. Dans le cadre de cette thèse, une structuration périodique 2D d’un matériau photosensible à base de TiO2 déposé sur divers substrats a été effectuée par la technique de photolithographie colloïdale. En utilisant ce matériau, cette approche permet en une seule étape de conduire à une couche fonctionnelle, stable mécaniquement et chimiquement. Enfin, cette thèse présente quelques pistes d’exploitation et de perspectives de l’utilisation du phénomène de concentration d’une onde incidente par les microparticules. Plus précisément, cette microstructuration peut être utilisée pour des fonctions de piégeage optique, pour de la croissance localisée de matériaux fonctionnels ou encore pour augmenter l’activité de photocatalyse de couches actives / This PhD thesis presents the theoretical and experimental results of the interaction between a plane wave and a monolayer of spherical / non-spherical submicron particles that are transparent to the optical field. Local amplification of the optical field under the particle can be observed. This amplification of electromagnetic field is called "photonic nanojet". A theoretical study of nanojet under the microparticles and the choice of optimal conditions, allowed us to exploit this nanojet as a micro-nano-structuring tool. A 2D periodic structuring of a TiO2-based photosensitive material deposited on various substrates was carried out by the colloidal photolithography technique. By using this TiO2-based photosensitive material, this approach makes possible in a single step to produce a functional layer. Finally, this thesis presents some opportunities to exploit the phenomenon of concentration of an incident wave by the microparticles. More precisely, this microstructuration can be used for optical trapping functions, for the localized growth of functional materials or for increasing the photocatalytic activity of active layers
3

Super-resolution optical imaging using microsphere nanoscopy

Lee, Seoungjun January 2013 (has links)
Standard optical microscopes cannot resolve images below 200 nm within the visible wavelengths due to optical diffraction limit. This Thesis reports an investigation into super-resolution imaging beyond the optical diffraction limit by microsphere optical nano-scopy (MONS) and submerged microsphere optical nano-scopy (SMON). The effect of microsphere size, material and the liquid type as well as light illumination conditions and focal plane positions on imaging resolution and magnification have been studied for imaging both biological (viruses and cells) and non-biological (Blu-ray disk patterns and nano-pores of anodised aluminium oxide) samples. In particular, sub-surface imaging of nano-structures (data-recorded Blu-ray) that cannot even be seen by a scanning electron microscope (SEM) has been demonstrated using the SMON technique. Adenoviruses of 75 nm in size have been observed with white light optical microscopy for the first time. High refractive index microsphere materials such as BaTiO3 (refractive index n = 1.9) and TiO2-BaO-ZnO (refractive index n = 2.2) were investigated for the first time for the imaging. The super-resolution imaging of sub-diffraction-limited objects is strongly influenced by the relationship between the far-field propagating wave and the near-field evanescent waves. The diffraction limit free evanescent waves are the key to achieving super-resolution imaging. This work shows that the MONS and SMON techniques can generate super-resolution through converting evanescent waves into propagating wave. The optical interactions with the microspheres were simulated using special software (DSIMie) and finite different in time domain numerical analysis software (CST Microwave Studio). The optical field structures are observed in the near-field of a microsphere. The photonic nanojets waist and the distance between single dielectric microsphere and maximum intensity position were calculated. The theoretical modelling was calculated for comparisons with experimental measurements in order to develop and discover super-resolution potential.

Page generated in 0.0488 seconds