• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 868
  • 65
  • 58
  • 33
  • 24
  • 12
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 1335
  • 547
  • 513
  • 320
  • 285
  • 277
  • 199
  • 193
  • 147
  • 136
  • 127
  • 125
  • 121
  • 102
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Functional Metasurfaces towards Applications: Optical Modulation, Integrated Photonics, and Biomolecular Sensing

Li, Zhaoyi January 2018 (has links)
Metasurfaces, a new class of artificial media attracting great research interest, are composed of a two-dimensional ensemble of designer optical antennas arranged with subwavelength separation that introduce spatially-varying optical properties (e.g., amplitude, phase and polarization). By engineering the subwavelength optical antennas and integrating with functional materials, metasurfaces can manipulate light at one’s will and have led to the demonstration of many exotic electromagnetic phenomena. Metasurfaces have the potential to replace bulky optical components and devices as they are ultra-thin (subwavelength thickness), light weight, and able to provide new functionalities and overcome the limitations of their conventional counterparts. There are a number of promising areas in fundamental research and practical applications where metasurfaces could have a significant impact. In this dissertation, I studied the fundamental physics of the strong interaction between light and metasurfaces and explored passive and active nanophotonic devices based on metasurfaces. I demonstrated metasurface-based devices showing record-breaking or completely novel functionalities; these devices include optical modulators for dynamic control of light propagating in free space over an unprecedented broad wavelength range, photonic integrated devices with record-small footprints, and metasurface sensors orders of magnitude more sensitive than the state-of-art sensing techniques. Strongly correlated perovskites possess widely tunable electronic structure that can host a variety of phases. Nickelates, in particular, undergo electric-field-tunable phase transitions with dramatic changes in the optical properties. In Chapter 2, I will describe my discovery of a new optical phase-transition material SmNiO3 and experimental demonstration of strong optical modulation utilizing the large and non-volatile optical refractive index change associated with electron-doping induced phase transition of SmNiO3. Large electrical modulation of light over a broad wavelength range, from the visible to the mid-infrared,  = 0.4 m – 17 m, is demonstrated using thin-film SmNiO3. By integrating SmNiO3 and plasmonic metasurface structures, modulation of a narrow band of light that resonantly interacts with the metasurfaces is realized. Furthermore, solid-state electro-optic modulators are demonstrated by integrating SmNiO3 and solid polymer electrolytes. Correlated perovskites with tunable and non-volatile electronic phases create a new platform for active photonic devices, such as optoelectronic modulators, electrically programmable optical memories, smart windows, and variable emissivity coatings. Research on metasurfaces has so far focused on controlling wavefronts of light propagating in free space, and the implication of metasurfaces on integrated photonics has not been explored. I conducted initial work on using metasurfaces to control light propagation on a chip. In chapter 3, I will show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nano-antennas provide a platform to control guided waves via strong optical scattering at subwavelength intervals. Such gradient metasurfaces enable the creation of small-footprint, broadband, and low-loss photonic integrated devices. I will describe experimental demonstration of waveguide mode converters, polarization rotators, and asymmetric optical power transmission in waveguides patterned with plasmonic gradient metasurfaces. I will also describe experimental demonstration of all-dielectric on-chip polarization rotators that are based on phased arrays of Mie resonators and have negligible insertion losses. Metasurfaces emerge as a new promising photonic platform for biosensing because they offer strong optical confinement and tunable optical resonances. In chapter 4, I will show that metasurface-based biosensors consisting of gold nano-antenna arrays loaded with graphene and working in the mid-infrared spectral range can achieve simultaneous high-sensitivity and high-specificity detection of biomolecules. The biosensors support a hybrid plasmon-phonon resonant mode that concentrates incident light into deeply subwavelength optical spots with local light intensity enhancement by a factor of 104. Strong light-molecule interactions in these optical spots allow for determing protein molecule concentrations via spectral shifts of the plasmon-phonon resonance. A combination of passive and active tuning of the metasurface sensors allows for spectrally overlapping the plasmon-phonon resonance and the vibrational modes of protein molecules, so that I can identify protein molecules via their characteristic mid-infrared “fingerprints”. The high sensitivity and specificity of the metasurface sensors enable the detection of the secondary structure of protein immunoglobulin (IgG) molecules with a sensitivity four orders of magnitude higher than that of conventional attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).
192

Physical Layer Modeling and Optimization of Silicon Photonic Interconnection Networks

Bahadori, Meisam January 2018 (has links)
The progressive blooming of silicon photonics technology (SiP) has indicated that optical interconnects may substitute the electrical wires for data movement over short distances in the future. Silicon Photonics platform has been the subject of intensive research for more than a decade now and its prospects continue to emerge as it enjoys the maturity of CMOS manufacturing industry. SiP foundries all over the world and particularly in the US (AIM Photonics) have been developing reliable photonic design kits (PDKs) that include fundamental SiP building blocks such as wavelength selective modulators and tunable filters. Microring resonators (MRR) are hailed as the most compact devices that can perform both modulation and demodulation in a wavelength division multiplexed (WDM) transceiver design. Although the use of WDM can reduce the number of fibers carrying data, it also makes the design of transceivers challenging. It is probably acceptable to achieve compactness at the expense of somewhat higher transceiver cost and power consumption. Nevertheless, these two metrics should remain close to their roadmap values for Datacom applications. An increase of an order of magnitude is clearly not acceptable. For example costs relative to bandwidth for an optical link in a data center interconnect will have to decrease from the current $5/Gbps down to <$1/Gbps. Additionally, the transceiver itself must remain compact. The optical properties of SiP devices are subject to various design considerations, operation conditions, and optimization procedures. In this thesis, the general goal is to develop mathematical models that can accurately describe the thermo-optical and electro-optical behavior of individual SiP devices and then use these models to perform optimization on the parameters of such devices to maximize the capabilities of photonic links or photonic switch fabrics for datacom applications. In Chapter 1, Introduction, we first provide an overview of the current state of the optical transceivers for data centers and datacom applications. Four main categories for optical interfaces (Pluggable transceivers, On-board optics, Co-packaged optics, monolithic integration) are briefly discussed. The structure of a silicon photonic link is also briefly introduced. Then the direction is shifted towards optical switching technologies where various technologies such as free space MEMS, liquid crystal on silicon (LCOS), SOA-based switches, and silicon-based switches are explored. In Chapter 2, Silicon Photonic Waveguides, we present an extensive study of the silicon-on-insulator (SOI) waveguides that are the basic building blocks of all of the SiP devices. The dispersion of Si and SiO2 is modeled with Sellmiere equation for the wavelength range 1500–1600 nm and then is used to calculate the TE and TM modes of a 2D slab waveguide. There are two reasons that 2D waveguides are studied: first, the modes of these waveguides have closed form solutions and the modes of 3D waveguides can be approximated from 2D waveguides based on the effective index method. Second, when the coupling of waveguides is studied and the concept of curvature function of coupling is developed, the coupled modes of 2D waveguides are used to show that this approach has some inherent small error due to the discretization of the nonuniform coupling. This chapter finishes by describing the coefficients of the sensitivity of optical modes of the waveguides to the geometrical and material parameters. Perturbation theory is briefly presented as a way to analytically examine the impact of small perturbations on the effective index of the modes. In Chapter 3, Compact Modeling Approach, the concept of scattering matrix of a multi-port silicon photonic device is presented. The elements of the S-matrix are complex numbers that relate the amplitude and phase relationships of the optical models in the input and output ports. Based on the scattering matrix modeling of silicon photonics devices, two methods of solving photonic circuits are developed: the first one is based on the iteration for linear circuits. The second approach is based on the construction of an equivalent signal flow graph (SFG) for the circuit. We show that the SFG approach is very efficient for circuits involving microring resonator structures. Not only SFG can provide the solution for the transmission, it also provides the signal paths and the closed-form solution based on the Mason’s graph formula. We also show how the SFG method can be utilized to formulate the backscattering effects inside a ring resonator. In Chapter 4, Scalability of Silicon Photonic Switch Fabrics, we develop the models for electro-optic Mach-Zehnder switch elements (2×2). For the electro-optic properties, the empirical Soref’s equations are used to characterize how the loss and index of silicon changes when the charge carrier density is changed. We then use our photonic circuit solver based on the iteration method to find accurate result of light propagation in large-scale switch topologies (e.g. 4×4, and 8×8). The concept of advanced path mapping based on physical layer evaluation of the switch fabric is introduced and used to develop the optimum routing tables for 4×4 and 8×8 Benes switch topologies. In Chapter 5, Design space of Microring Resonators, we introduce the concept of curvature function of coupling to mathematically characterize the coupling coefficient of a ring resonator to a waveguide as a function of the geometrical parameters (ring radius, coupling gap, width and height of waveguides) and the wavelength. Extensive 2D and 3D FDTD simulations are carried out to validate our modeling approach. Experimental demonstrations are also used to not only further validate our modeling of coupling, but also to extract an empirical power-law model for the bending loss of the ring resonators as a function the radius. By combining these models, we for the first time present a full characterization of the design space of microring resonators. Moreover, the value of this discussion will be further apparent when the scalability of a silicon photonic link is studied. We will show that the FSR of the rings determines the optical bandwidth but it also impacts the properties of the ring resonators. In Chapter 6, Thermo-optic Efficiency of Microheaters, we develop analytical models for the thermo-optic properties of SiP waveguides. For the thermo-optic properties, the concept of thermal impulse response is mathematically developed for integrated micro-heaters. The thermal impulse response is a key function that determines the tradeoff between heating efficiency and heating speed (thermal bandwidth), as well as allows us to predict the pulse-width-modulation (PWM) optical response of the heater-waveguide system. One of the motivations behind this study was to find the highest possible efficiency for thermal tuning of microring resonators to use it in the evaluation of the energy consumption of a photonic link. The results indicate 2 nm/mW which is in agreement with the trends that we see in the literature. In Chapter 7, Crosstalk Penalty, we theoretically and experimentally investigate the optical crosstalk effects in microring-based silicon photonic interconnects. Both inter-channel crosstalk and intra-channel crosstalk are investigated and approximate equations are developed for their corresponding power penalties. Inclusion of the inter-channel crosstalk is an important part of our final analysis of a silicon photonic link. In Chapter 8, Scalability of Silicon Photonic Links, we present the analysis of a WDM silicon photonics point-to-point link based on microring modulators and microring wavelength filters. Our approach is based on the power penalty analysis of non-return-to-zero (NRZ) signals and Gaussian noise statistics. All the necessary equations for the optical power penalty calculations are presented for microring modulators and filters. The first part of the analysis is based on various ideal assumptions which lead to a maximum capacity of 2.1 Tb/s for the link. The second part of the analysis is carried out with more realistic assumptions on the photonic elements in the link, culminating in a maximum throughput of 800 Gb/s. We also provide estimations of the energy/bit metric of such links based on the optimized models of electronic circuits in 65 nm CMOS technology.
193

Pattern recognition employing spatially variant unconstrained correlation filters

Gardezi, Akber Abid January 2013 (has links)
A spatial domain Optimal Trade-off Maximum Average Correlation Height (SPOT-MACH) filter is proposed in this thesis. The proposed technique uses a pre-defined fixed size kernel rather than using estimation techniques. The spatial domain implementation of OT-MACH offers the advantage that it does not have shift invariance imposed on it as the kernel can be modified depending upon its position within the input image. This allows normalization of the kernel and allows inclusion of a space domain non-linearity to improve performance. The proposed SPOT-MACH filter can be used to maximize the height of the correlation peak in the presence of distortions of the training object and provide resistance to background clutter. One of the major characteristics of the SPOT-MACH filter is that it can be tuned to maximize the height and sharpness of the correlation peak by using trade-offs between distortion tolerance, peak sharpness and the ability to suppress clutter noise. A number of non-parametric local regression techniques offer a simplified approach to pattern recognition problems which employ linear filtering using low pass filters designed using moving window local approximations. In most of these cases the algorithms search for a region of interest near the point of estimation for various prevailing conditions which fit the required criteria. These estimates are calculated for a defined window size which is determined as being the largest area within which the estimators do not widely vary from the criteria. The only drawback in this approach is that the window size is directly proportional to the required computational resources and would adversely affect the performance of the system if the moving window size is not proportionate to the resources. The proposed filter employs an optimization technique using low-pass filtering to highlight the potential region of interests in the image and then restricts the movement of the kernel to these regions to allow target identification and to use less computational resources. Also another optimization technique is also proposed which is based on an entropy filter which measures the degree of randomness between two changing scenes and would return the area where change has occurred i.e. the target object might be present. This approach gives a more accurate region of interest than the low-pass filtering approach. Apart from the software based optimization approaches two hardware based enhancement techniques have also been proposed in this thesis. One of the approaches employs Field Programmable Gate Array (FPGA) to perform correlation process employing the inbuilt multipliers and look up tables and the other one uses Graphical Processing Unit (GPU) to do parallel processing of the input scene. Also in this thesis a detailed analysis of SPOT-MACH has been carried out by comparing with popular feature based techniques like Scale Invariant Feature Transform (SIFT) and a comparison matrix has been created. The proposed filter uses a two-staged approach using speed optimizations and then detection of targets from input scenes. Both visible and Forward Looking Infrared (FLIR) imagery data sets have been used to test the performance of filter.
194

Adaptive object segmentation and tracking

Bangalore Manjunathamurthy, Nagachetan January 2012 (has links)
Efficient tracking of deformable objects moving with variable velocities is an important current research problem. In this thesis a robust tracking model is proposed for the automatic detection, recognition and tracking of target objects which are subject to variable orientations and velocities and are viewed under variable ambient lighting conditions. The tracking model can be applied to efficiently track fast moving vehicles and other objects in various complex scenarios. The tracking model is evaluated on both colour visible band and infra-red band video sequences acquired from the air by the Sussex police helicopter and other collaborators. The observations made validate the improved performance of the model over existing methods. The thesis is divided in three major sections. The first section details the development of an enhanced active contour for object segmentation. The second section describes an implementation of a global active contour orientation model. The third section describes the tracking model and assesses it performance on the aerial video sequences. In the first part of the thesis an enhanced active contour snake model using the difference of Gaussian (DoG) filter is reported and discussed in detail. An acquisition method based on the enhanced active contour method developed that can assist the proposed tracking system is tested. The active contour model is further enhanced by the use of a disambiguation framework designed to assist multiple object segmentation which is used to demonstrate that the enhanced active contour model can be used for robust multiple object segmentation and tracking. The active contour model developed not only facilitates the efficient update of the tracking filter but also decreases the latency involved in tracking targets in real-time. As far as computational effort is concerned, the active contour model presented improves the computational cost by 85% compared to existing active contour models. The second part of the thesis introduces the global active contour orientation (GACO) technique for statistical measurement of contoured object orientation. It is an overall object orientation measurement method which uses the proposed active contour model along with statistical measurement techniques. The use of the GACO technique, incorporating the active contour model, to measure object orientation angle is discussed in detail. A real-time door surveillance application based on the GACO technique is developed and evaluated on the i-LIDS door surveillance dataset provided by the UK Home Office. The performance results demonstrate the use of GACO to evaluate the door surveillance dataset gives a success rate of 92%. Finally, a combined approach involving the proposed active contour model and an optimal trade-off maximum average correlation height (OT-MACH) filter for tracking is presented. The implementation of methods for controlling the area of support of the OT-MACH filter is discussed in detail. The proposed active contour method as the area of support for the OT-MACH filter is shown to significantly improve the performance of the OT-MACH filter's ability to track vehicles moving within highly cluttered visible and infra-red band video sequences.
195

Control of dynamical regimes in optical microresonators exploiting parametric interaction

Di Lauro, Luigi January 2019 (has links)
Microresonators have the ability of strongly enhancing the propagating optical field, enabling nonlinear phenomena, such as bi-stability, self-pulsing and chaotic regimes, at very low powers. It is fundamental to comprehend the mechanisms that generate such dynamics, which are crucial for micro-cavities-based applications in communications, sensing and metrology. The aim of this work is to develop a scheme for the control of nonlinear regimes in microresonators, assuming the interplay between the ultra-fast Kerr effect and a slow intensity-dependent nonlinearity, such as thermo-optical effect. The framework of the coupled-mode theory is applied to model the system, while the bifurcation theory is used to investigate a configuration in which the power and frequency of a weak signal can control the behaviour of a strong pump. In this regards, this study demonstrates that the effect of a parametric interaction, specifically the four-wave mixing, plays a fundamental role in influencing the nature of the stationary states observed in a micro-cavity. The results show possible new strategies for enhanced, low-power, all-optical control of sensors, oscillators and chaos-controlled devices. Moreover, the outcomes provide new understanding of the effect of coherent wave mixing in the thermal stability regions of optical micro-cavities, including optical micro-combs.
196

Hybrid fiber-silicon multi-wavelength laser.

January 2012 (has links)
近年在矽光子學方面的研究日漸增多,主要原因是在高效能電腦,低成本通訊接取網絡及集成光學感應器等各方面有很大的潛在應用。以矽為原材料的各種光學器件已經被廣泛研究,包括電光調制器,光感應器和各式各樣主動及被動器件。但是由於矽是一種間接能隙的物質,即是由電子激發的電子電洞的結合是屬於非輻射躍遷,所以不可以得到光放大和激光器的效果。為了製作集成激光器,已經有很多不同的研究方案,例如在矽波導上摻雜鉺或是混合集成矽和-族半導體。在這篇論文中,我們提出並且論証了一個創新的方案去製作由光纖和矽波導混合而成的激光器,大大簡化了設計和生產過程。 / 在論文中,我們會集中討論選取光波長的器件及整體結構的設計。在首次的結構設計上,我們利用了分佈在矽波導兩側的布拉格反射鏡作為選取光波長的器件和一小段以鉺摻雜的光纖作為放大器。我們將會詳細形容該器件的設計、模擬效果和實驗結果。我們已經透過實驗証明了單波長的光纖-矽波導混合激光器,其側模抑制超過35分貝。 / 另一方面,為了製作多波長的光纖-矽波導混合激光器,我們利用微環諧震器來取代分佈在矽波導兩側的布拉格反射鏡作為選取光波長的器件。我們將會討論微環諧震器的設計以及達到穩定多波長的光纖和矽波導混合激光器的設計要求。 / Motivated by potential applications for optical interconnects in high performance computing, low cost optical access networks in telecommunications and integrated optical sensors, there has been much research in recent years on silicon photonics. Different silicon-based photonic devices have been studied, including optical modulators, detectors and various types of active and passive components. However, since the bandgap of silicon is indirect, the recombination of carriers injected by electrical pumping is dominated by non-radiative transitions and thus it is not possible to get optical gain via current injection into silicon diodes. / To implement integrated laser, different approaches such as erbium doping on silicon waveguide and hybrid integration of III-V semiconductors on silicon have been investigated. In this thesis, we propose and demonstrate a novel approach for making a hybrid fiber-silicon laser to simplify the design and fabrication processes. We propose the use of Erbium-doped fiber (EDF) to provide gain and silicon devices to provide all the other functionalities needed for a modulated laser. / The thesis focuses on the design of wavelength selective element and the structure of hybrid fiber-silicon laser. The first design includes a silicon waveguide side-cladding distributed Bragg reflector (WSC-DBR) as the wavelength selective component on silicon-on-insulator (SOI) wafer and a short length of EDF as the gain medium. The details of design, simulation and experimental results of the WSC-DBR will be described. Single wavelength WSC-DBR hybrid fiber-silicon laser is demonstrated with a side mode suppression ratio (SMSR) of over 35dB. / We also investigate the use of a micro-ring resonator to replace WSC-DBR for selecting multiple wavelengths. Details of the micro-ring resonator are given and we discuss the requirement and design criteria to achieve stable multi-wavelength lasing. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Fung, Ka Yan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references. / Abstracts also in Chinese. / ABSTRACTOF THESIS ENTITLED: --- p.ii / ACKNOWLEDGEMENT --- p.v / TABLE OF CONTENT --- p.vii / Chapter 1 --- INTRODUCTION --- p.10 / Chapter 1.1 --- Photonic Integrated Circuits --- p.10 / Chapter 1.2 --- Silicon Photonics --- p.13 / Chapter 1.3 --- Lasers in Silicon --- p.20 / Chapter 1.4 --- Motivation --- p.27 / Chapter 1.5 --- References --- p.29 / Chapter 2 --- ERBIUM DOPED FIEBR AND FIBER LASERS --- p.34 / Chapter 2.1 --- Erbium doped fiber --- p.34 / Chapter 2.2 --- Multi-wavelength lasers --- p.45 / Chapter 2.3 --- References --- p.54 / Chapter 3 --- SINGLE CHANNEL HYBRID FIBER-SILICON LASER --- p.59 / Chapter 3.1 --- Introduction of Distributed Bragg reflector --- p.60 / Chapter 3.2 --- Design of waveguide side-cladding distributed Bragg reflector --- p.63 / Chapter 3.3 --- Simulation results of waveguide side-cladding distributed Bragg reflector --- p.66 / Chapter 3.4 --- Device fabrication --- p.69 / Chapter 3.5 --- Experimental results of waveguide side-cladding distributed Bragg reflector --- p.71 / Chapter 3.6 --- Experimental results of hybrid fiber-silicon laser --- p.77 / Chapter 3.7 --- Introduction of micro-ring resonator --- p.81 / Chapter 3.8 --- Design of race track micro-ring resonator --- p.85 / Chapter 3.9 --- Experimental results of race track micro-ring resonator --- p.88 / Chapter 3.10 --- Experimental results of hybrid fiber-silicon laser with ring resonator --- p.95 / Chapter 3.11 --- Summary --- p.99 / Chapter 3.12 --- References --- p.101 / Chapter 4 --- DUAL WAVELENGTH HYBRID FIBER SILICON LASER --- p.102 / Chapter 4.1 --- Design of micro-ring resonator for dual wavelength --- p.103 / Chapter 4.2 --- Experimental results of micro-ring resonator --- p.104 / Chapter 4.3 --- Experimental results of dual wavelength hybrid fiber-silicon laser --- p.108 / Chapter 4.4 --- Summary --- p.119 / Chapter 4.5 --- References --- p.121 / Chapter 5 --- DUAL WAVELENGTH VERTICAL GRATING COUPLER --- p.123 / Chapter 5.1 --- Introduction of grating coupler --- p.123 / Chapter 5.2 --- Design of dual wavelength vertical grating coupler --- p.125 / Chapter 5.3 --- Simulation of dual wavelength vertical grating coupler --- p.127 / Chapter 5.4 --- Experimental results of dual wavelength vertical grating coupler --- p.135 / Chapter 5.5 --- Summary --- p.138 / Chapter 5.6 --- References --- p.139 / Chapter 6 --- CONCLUSION AND FUTURE WORK --- p.141 / Chapter 6.1 --- Conclusion --- p.141 / Chapter 6.2 --- Future work --- p.144 / Chapter 6.3 --- References --- p.146 / Chapter APPENDIX A: --- PUBLICATION LIST --- p.147 / Chapter APPENDIX B: --- LIST OF TABLES --- p.149 / Chapter APPENDIX C: --- LIST OF FIGURES --- p.150 / Chapter APPENDIX D: --- METHODS OF LINEWIDTH MEASUREMENT --- p.155 / Chapter APPENDIX E: --- EQUIPMENT INFORMATION --- p.164
197

Thermoelastic and photoelastic full-field stress measurement

Woolard, Deonna Faye 01 January 1999 (has links)
Photoelasticity is an optical technique that measures the difference of the principal stresses plus the principal stress direction. A complementary technique is thermoelasticity which measures the sum of the principal stresses. Combining these two full-field, non-contact nondestructive evaluation techniques allows the individual stress components to be measured. One of the main difficulties in merging these two measurement systems is in identifying an appropriate surface coating. Thermoelasticity demands a highly emissive surface, while photoelasticity requires a thick, stress-birefringent, transparent coating with a retro-reflective backing. Two coatings have been identified that can be used for combined thermoelastic and photoelastic stress measurements: PMMA and polycarbonate.;An anisotropic electromagnetic boundary value model was developed to understand more fully the mechanisms through which photoelastic stress patterns are produced. This model produced intensity contour maps which matched the fringe patterns observed in the laboratory, and allowed the effect of measurement errors on the calculated stress tensor to be quantified. One significant source of error was the retro-reflective backing, which depolarized the light and degraded the resulting photoelastic fringes. A quantitative analysis of the degraded fringes, to be used as a rating scheme for reflective backing materials, showed that the isoclinic lines shift position as a result of the backing roughness and oblique incidence. This is a concern when calculating the stress components through the combination of photoelasticity and thermoelasticity because the data maps are integrated at the pixel level. Small shifts in the photoelastic fringes result in incorrect information being assigned to some pixels and hence lead to uncertainties in the stress tensor components. Progress in the understanding of the depolarization at the reflective backing allows the specification of new materials that will minimize this effect, as well as the development of robust computer algorithms to correct for any remaining depolarization.
198

The projector basis method for electronic band structure calculations

Haas, Christopher 01 January 1996 (has links)
Over the last several decades, two methods have emerged as the standard tools for the calculation of electronic band structures. These methods, the Car-Parinello plane wave method and the linear augmented plane wave method (LAPW), each have strengths and weaknesses in different regimes of physical problems. The Car-Parinello algorithm is ideal for calculations with soft pseudopotentials and large numbers of atoms. The LAPW method, on the other hand, easily handles all-electron and hard-core pseudopotential calculations with a small number of atoms. The projector basis method, presented here, is a hybrid mixed basis method which allows the calculation of moderately large ({dollar}\sim{dollar}200) numbers of atoms represented by hard pseudopotentials. This method will then be used to calculate two members of a relatively new mass of materials, called electrides, in which the anion has been replaced with a localized electron.
199

Design and Performance Evaluation of Linear and Axial-Flux Magnetic Gears

Bahrami Kouhshahi, Mojtaba 16 April 2019 (has links)
The conversion from low speed to high speed and vice versa in various forms, including rotary and linear motion, is a requirement for a wide range of applications. For example, wind power generation requires a conversion of low speed rotation of turbine blades to high speed generator rotation, and ocean wave power generation is achievable by conversion of low speed linear motion to either high speed rotation or high speed linear motion. Mechanical gearboxes, hydraulic and pneumatic actuators are commonly used to achieve these conversions. However, these systems suffer from reliability issues, high maintenance requirements, noise, and lack of overload protection. As an alternative, electromagnetic actuators overcome most of the issues related to the mechanical, hydraulic and pneumatic mechanisms. However, magnetic shear stress is constraint by current density and magnetic saturation. Recently, magnetic gearboxes have been proposed, which rely only on magnetic loading. They provide speed and force conversion like their mechanical counterparts, but without thermal constraints (current density limits). Unlike mechanical gears, magnetic gear contact-less operation enables it to operate without lubrication and with low noise, and higher efficiency. Its reliance on magnetic loading also provides overload protection. This dissertation focuses on investigating two new types of magnetic gears; first a magnetically-geared lead screw is proposed, which converts a low speed linear motion to a high speed rotary motion. The proposed actuator is a combination of two previously proposed actuators, the linear magnetic gear and the magnetic lead screw. Unlike these two topologies, the translator part of the proposed magnetically geared lead screw is made entirely of low-cost ferromagnetic steel. Therefore, the translator stroke length can be long without requiring more magnet material. In the second part of this dissertation, an axial flux magnetic gear is proposed that has an integrated outer stator. This axial flux magnetically-geared motor is unique in that the stator shares the high-speed rotor with the magnetic gear, so there is no need for a separate rotor. The high speed and low speed rotors use a flux-focusing typology. The stator is mounted outside the axial flux magnetic gear. This makes the design mechanically less complex. It also enables the stator to be cooled more easily. In the last part of this dissertation, analytical-based models are proposed for a linear permanent magnet coupling and magnetic lead screw. These models help to find the upper bound of the similar devices, which require a scaling analysis. Numerical methods like finite element analysis are accurate and effective enough for modeling various electromechanical and electromagnetic devices. However, these simulations are usually computationally expensive; they require a considerable amount of memory and time, especially when considering 3D finite element simulation. The proposed analytical models offer exact field solution while significantly reducing the computational time. Detailed analysis of two magnetic gears is given under their corresponding chapters. Preliminary experimental results are also provided. The analytical-based model is presented and verified by FEA results. A summary of research contributions and future works is outlined.
200

The Application and Limitations of PECVD for Silicon-based Photonics

Spooner, Marc, mas109@rsphysse.anu.edu.au January 2006 (has links)
This thesis presents results on the applications and limitations of plasma enhanced chemical vapour deposition for silicon-based photonics, with an emphasis on optical microcavities for the control of light emission from silicon nanocrystals. ¶ Silicon nanocrystals were formed by precipitation and growth within Si-rich oxide layers (SiOx) deposited by plasma enhanced chemical vapour deposition. The films were found to exhibit strong room temperature photoluminescence, with the optimum emission depending on the composition and processing of the films. The strongest emission was achieved for films with a silicon content of ~40%, following hydrogen passivation. Hydrogen was introduced into the samples by two different methods: by annealing in forming gas (95% N2: 5% H2) or by annealing with a hydrogenated silicon nitride capping layer. Both methods caused an increase in photoluminescence intensity due to the passivation of defects. In contrast, the presence of low levels of iron and gold were shown to reduce the concentration of luminescent nanocrystals due to the creation of non-radiative centres. ¶ Optical microcavity structures containing silicon nanocrystals were also fabricated by Plasma enhanced chemical vapour deposition, using silicon dioxide, silicon nitride and silicon-rich oxide layers. The microcavities consisted of a silicon-rich oxide layer between two distributed Bragg reflectors formed of alternating silicon dioxide/nitride layers. The optical emission from these and related structures were examined and compared with that from individual layers in the structure. This revealed a complex interplay between defect and nanocrystal luminescence, hydrogen passivation and materials structure. The resulting microcavity structures were shown to be suitable for producing a stop-band over the wavelength range of interest for nanocrystal emission, 500-1000nm, and to produce significant intensity enhancement and spectral narrowing. Quality factors of 50-200 were demonstrated. ¶ The application of plasma deposited films was shown to be limited by stress-induced failure that resulted in cracking and delamination of the films during annealing. The SiOx films thicker than about 600nm failed predominantly by cracking. This was shown to be caused by tensile stress in the film caused by hydrogen desorption during high temperature annealing. The resulting cracks showed preferred alignment depending on the crystallographic orientation of the silicon substrate. For films deposited on (100) silicon, two modes of crack propagation were observed, straight cracks aligned along < 100> directions, and wavy cracks aligned along < 110> directions. For films deposited on (110) silicon, straight cracks were observed along [-1 10] directions, with a lesser number aligned along [001] directions. Cracks were also observed for films on (111) silicon. These showed 3-fold symmetry consistent with crack propagation along < 211> directions due to plastic deformation. Details of these crack geometries and their dependencies are discussed.

Page generated in 0.0802 seconds