• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 7
  • 7
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication and analysis of 3D colloidal photonic crystals /

Man, Ka Ho. January 2006 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references (leaves 79-81). Also available in electronic version.
2

Theory of resonance and mode coupling in photonic crystal devices

White, Thomas P. January 2005 (has links)
Thesis (Ph. D.)--University of Sydney, 2006. / Title from title screen (viewed 30 May 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Physics, Faculty of Science. "Centre for Ultrahigh-bandwidth Devices for Optical Systems" -- T.p. Degree awarded 2006; thesis submitted 2005. Includes bibliographical references. Also available in print form.
3

Woodpile-structured photonic crystals fabricated by holographic lithography /

Pang, Yee Kwong. January 2006 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references (leaves 62-68). Also available in electronic version.
4

Analysis of photonic crystal defects for biosensing applications

Paturi, Naveen Kumar. January 2006 (has links)
Thesis (M.S.)--West Virginia University, 2006. / Title from document title page. Document formatted into pages; contains viii, 70 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 55-57).
5

Numerical modelling of photonic crystal based switching devices

Selim, Ramsey January 2010 (has links)
In the last few years research has identified Photonic Crystals (PhCs) as promising material that exhibits strong capability of controlling light propagation in a manner not previously possible with conventional optical devices. PhCs, otherwise known as Photonic Bandgap (PBG) material, have one or more frequency bands in which no electromagnetic wave is allowed to propagate inside the PhC. Creating defects into such a periodic structure makes it possible to manipulate the flow of selected light waves within the PhC devices outperforming conventional optical devices. As the fabrication of PhC devices needs a high degree of precision, we have to rely on accurate numerical modelling to characterise these devices. There are several numerical modelling techniques proposed in literature for the purpose of simulating optical devices. Such techniques include the Finite Difference Time Domain (FDTD), the Finite Volume Time Domain (FVTD), and the Multi-Resolution Time Domain (MRTD), and the Finite Element (FE) method among many others. Such numerical techniques vary in their advantages, disadvantages, and trade-offs. Generally, with lower complexity comes lower accuracy, while higher accuracy demands more complexity and resources. The Complex Envelope Alternating Direction Implicit Finite Difference Time Domain (CE-ADI-FDTD) method was further developed and used throughout this thesis as the main numerical modelling technique. The truncating layers used to surround the computational domain were Uniaxial Perfectly Matched Layers (UPML). This thesis also presents a new and robust kind of the UPML by presenting an accurate physical model of discretisation error. iv This thesis has focused on enhancing and developing the performance of PhC devices in order to improve their output. An improved and new design of PhC based Multiplexer/Demultiplexer (MUX/DEMUX) devices is presented. This is achieved using careful geometrical design of microcavities with respect to the coupling length of the propagating wave. The nature of the design means that a microcavity embedded between two waveguides selects a particular wavelength to couple from one waveguide into the adjacent waveguide showing high selectivity. Also, the Terahertz (THz) frequency gap, which suffers from a lack of switching devices, has been thoroughly investigated for the purpose of designing and simulating potential PhC based switching devices that operate in the THz region. The THz PhC based switching devices presented in this thesis are newly designed to function according to the variation of the resonant frequency of a ring resonator embedded between two parallel waveguides. The holes of the structures are filled with polyaniline electrorheological fluids that cause the refractive index of the holes to vary with applied external electric field. Significant improvements on the power efficiency and wavelength directionality have been achieved by introducing defects into the system.
6

The effects due to disorder in the applications of photonic band gap materials /

Kwan, Kai-Cheong. January 2002 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2002. / Includes bibliographical references (leaves 58-59). Also available in electronic version. Access restricted to campus users.
7

Unraveling photonic bands : characterization of self-collimation in two-dimensional photonic crystals

Yamashita, Tsuyoshi. January 2005 (has links)
Thesis (Ph. D.)--School of Materials Science and Engineering, Georgia Institute of Technology, 2006. / Summers, Christopher, Committee Chair ; Chang, Gee-Kung, Committee Member ; Carter, Brent, Committee Member ; Wang, Zhong Lin, Committee Member ; Meindl, James, Committee Member ; Li, Mo, Committee Member.

Page generated in 0.0571 seconds