Spelling suggestions: "subject:"photophysical 2studies"" "subject:"photophysical 3studies""
1 |
DENSITY FUNCTIONAL THEORY STUDIES OF PHOTOINDUCED ELECTRON EXCITATION AND TRANSFER OF ORGANIC DYES FOR PHOTODYNAMIC THERAPY, SOLAR CELLS, AND FLUORESCENCE SENSOR APPLICATIONSWeerasinghe, Krishanthi Chandima 01 August 2016 (has links) (PDF)
The main aim of work presented here is to understand photophysical processes of organic dyes and to design better organic molecules/systems which can be applied in many applications such as solar cells, photodynamic therapy, and fluorescence sensors. Developments of novel multichromophore organic materials for the above mentioned applications were made using computational tools. A brief description of the history of computational chemistry was given based on the photochemistry of organic dyes in the introductory chapters and also the importance of basis sets and functionals was discussed in order to produce accurate computational results. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed to understand the photophysical processes in the porphyrin-perylene bisimide (HTPP-PDI) dyad that exhibited long-lived triplet states. The DFT results show that breaking the rigidity of PDI in HTPP-PDI was responsible for the generation of long-lived triplet states. Furthermore, six porphyrin derivatives were designed by introducing a 4,4’-dicarboxybutadienyl functional group to the porphyrin moiety and studied to investigate the substituent effects on the non-coplanarity, molecular orbitals, and excitation wavelength of the porphyrin donor. Five of the six proposed porphyrin derivatives are promising donors in the HTPP-PDI dyad to replace HTPP for its potential use in photodynamic therapy. Six donor- accepter(s) systems were designed for their potential application in solar cells. Four D-A1-A2 architectural triads, MTPA-TRC-AEAQ, MTPA-TRC-HTPP, MTPA-TRC-PDI, and MTPA-TRC-PBI were designed. The cascade electronic energy levels were obtained and experimentally observed, which lead to sequential electron transfers from 1MTPA* to TRC and then to AEAQ (HTPP/PDI/PBI) module as well as a hole transfer from 1AEAQ*(1HTPP*/1PDI*/1PBI*) to MTPA module. Therefore, all the D-A1-A2 systems we have designed are ambipolar. Interestingly, the lifetime of charge separated states of the newly designed MTPA*+-TRC-AEAQ*- was elongated to 650 ns, an eightfold of that of the donor-acceptor MTPA-TRC parent molecule (80 ns). However, different charge separated state lifetimes were obtained for MTPA*+-TRC-PDI*-(22ns) and MTPA*+-TRC-PBI*-(75ns). The photophysical results suggested that the charge separated state may decay to the triplet state when the charge separated state exhibits a higher energy level than the triplet state. Further, the photovoltaic tests indicated potential applications of MTPA-TRC-AEAQ in solar cells. DFT and TDDFT calculations were performed together with experimental studies to explore the nature of fluorescence enhancement in the anthracene-based sensor after the addition of Zn2+. A 23-fold fluorescence emission was quenched via non-radiative decay pathway in the absence of Zn2+. However, when the Zn2+ chelated to the sensor fluorescence intensity was increased remarkably. A 32-fold fluorescence increase was overserved and calculation results suggested this could be due to the inhibition of the electron-transfer pathway and enhanced rigidity of sensor-Zn2+ complex. The response selectivity of Zn2+ over Ca2+, Mg2+, Cu2+, and Hg2+ ions was also studied using DFT calculations and it was found that Zn2+ has a strong binding affinity to the sensor, which could be a potential application in the detection of Zn2+.
|
2 |
Systèmes moléculaires pour la production d'hydrogène photo-induite dans l'eau associant des catalyseurs de cobalt à un photosensibilisateur de ruthénium ou un colorant organique / Molecular systems for photo-induced hydrogen production from water involving cobalt catalysts and a ruthénium photosensitizer or an organic dyeGueret, Robin 04 December 2017 (has links)
Les travaux de cette thèse sont centrés sur le développement de systèmes moléculaires en solution homogène pour la production photocatalytique de dihydrogène dans l'eau utilisant des catalyseurs de cobalt à ligands pentadentate tétrapyridinique ou tétra- et pentaaza macrocycliques. Associés au photosensibilisateur et à l’ascorbate comme donneur d’électron sacrificiel, les complexes à ligands macrocycliques présentent d’excellentes performances pour la production d’H2, bien supérieures à celles des complexes à ligands polypyridiniques en termes d’efficacité et de stabilité, en raison de la grande stabilité de leur état réduit «Co(I)». Enfin, [Ru(bpy)3]2+ a pu être substitué par un colorant organique très robuste du type triazatriangulénium conduisant à un système photocatalytique encore plus performant. Ces résultats démontrent que les colorants organiques sont une alternative viable aux photosensibilisateurs à base de métaux nobles, même en milieu aqueux acide. / The work of this manuscript is focused on the design of molecular systems in homogeneous solution for photocatalytic production of molecular hydrogen in water using cobalt catalysts with pentadentate tetrapyridinic and tetra- and pentaza macrocyclic ligands. In association with [Ru(bpy)3]2+ as photosensitizer and sodium ascorbate as sacrificial electron donor, the macrocycle based catalysts display high performances for H2 production, far exceeding those of the polypyridine based catalysts, both in terms of activity and stability, because of the stability of their reduced state «Co(I)». Finally, [Ru(bpy)3]2+ was successfully substituted with a robust organic dye belonging to the triazatriangulenium family, leading to an even more efficient photocatalytic system. These results demonstrate well that organic dyes are a truly efficient alternative to noble metal based photosensitizers, even in acidic aqueous medium.
|
Page generated in 0.0597 seconds