• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 11
  • 3
  • 1
  • Tagged with
  • 34
  • 34
  • 8
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Untersuchungen zur Funktion sauerstofftoleranter, NAD + -reduzierender Hydrogenasen und zu deren Anwendung in der lichtgetriebenen Wasserstoffproduktion in Cyanobakterien

Karstens, Katja 02 February 2015 (has links)
Die lösliche, NAD+-reduzierende Hydrogenase (SH) aus Ralstonia eutropha H16 ist eine Pyridinnukleotid-abhängige Hydrogenase. Das heißt, der Umsatz von H2 im Hydrogenasemodul des Enzyms ist an die Reduktion von NAD(P)+ im NAD(P)H:Akzeptor-Oxidoreduktasemodul gekoppelt. Die SH ist Vertreter des Subtyps, der auch in Gegenwart von O2 katalytisch aktiv ist. Dies wird ermöglicht durch eine reduktive Entfernung von O2, die nach dem aktuellen Modell abhängig ist vom rückläufigen e--Transport vom NADH:Akzeptor-Oxidoreduktasemodul zum aktiven [NiFe]-Zentrum in der großen Hydrogenaseuntereinheit. Der Einfluss des FeS-Clusters in der kleinen Hydrogenaseuntereinheit HoxY auf diesen Prozess wurde hier untersucht. Dabei konnte gezeigt werden, dass die vier hochkonservierten Cysteine C41, C44, C113 und C179 in HoxY an der Koordination des FeS-Zentrums beteiligt sind. Außerdem wurde das nahegelegene Cystein C39 als relevant für die Sauerstofftoleranz identifiziert. Weiterhin wurde gezeigt, dass das Tryptophan W42 aus HoxY essentiell für die Hydrogenaseaktivität der SH ist. Damit bestätigt sich, dass die Kinetik des rückläufigen e--Transports durch die Aminosäureumgebung des FeS-Clusters in HoxY beeinflusst ist. Ferner wurden in dieser Arbeit Ansätze zum Einsatz der SH aus R. eutropha in einer H2-produzierenden cyanobakteriellen Designzelle weiterverfolgt. Dazu wurden Hybridsysteme aus SH und cyanobakteriellem Photosystem I in vitro hinsichtlich ihrer Fähigkeit zur lichtgetriebenen H2-Produktion untersucht. Außerdem wurde an einem heterologen Expressionssystem der SH für Cyanobakterien gearbeitet. Weiterhin wurde die SH aus Rhodococcus opacus MR11 als komplementäres Modellsystem für O2-tolerante Pyridinnukleotid-abhängige Hydrogenasen etabliert. Dieser zur SH aus R. eutropha homologe Komplex hatte in früheren Arbeiten Vorteile für spektroskopische Studien offenbart und wurde hier erstmals im direkten Vergleich zur SH aus R. eutropha biochemisch und spektroskopisch charakterisiert. / The soluble, NAD+-reducing hydrogenase (SH) from Ralstonia eutropha H16 is a pyridine nucleotide-dependent hydrogenase. In these types of enzymes the conversion of H2 in the hydrogenase module of the complex is coupled to the reduction of NAD(P)+ in the NAD(P)H:acceptor oxidoreductase module. The SH belongs to a subtype that is catalytically active also in the presence of O2. This O2 tolerance is enabled by a reductive removal of O2, which according to the current model depends on a reverse e- flow from the NADH:acceptor oxidoreductase module to the active [NiFe] site in the large hydrogenase subunit. The impact of the FeS cluster in the small hydrogenase subunit HoxY on this process was analyzed in this study. Thereby it was shown that the four highly conserved cysteines C41, C44, C113 and C179 in HoxY are involved in the coordination of the FeS center. Further the nearby cysteine C39 was identified to be relevant for the O2 tolerance of the SH. Additionally we found the tryptophan W42 to be essential for the hydrogenase activity of the SH. Thus it was confirmed that the kinetic of the reverse e- transport is affected by the amino acid environment of the FeS cluster in HoxY. In addition, approaches for using the SH from R. eutropha in H2 producing cyanobacterial design cells were pursued. On one hand hybrid systems consisting of the SH and cyanobacterial photosystem I were analyzed in vitro for their capacity to produce H2 in a light dependent manner. On the other hand work on a heterologous expression system of the SH for Cyanobacteria was continued. Furthermore the SH from Rhodococcus opacus MR11 was established as complementary model system for O2-tolerant pyridine nucleotide-dependent hydrogenases. This complex, which is homologous to the SH from R. eutropha, has revealed advantages for spectroscopic analysis in earlier studies. Here it was characterized biochemically and spectroscopically for the first time in direct comparison with the SH from R. eutropha.
32

Solar Energy Conversion in Plants and Bacteria Studied Using FTIR Difference Spectroscopy and Quantum Chemical Computational Methodologies

Parameswaran, Sreeja 15 July 2009 (has links)
This dissertation presents a study of the molecular mechanism underlying the highly efficient solar energy conversion processes that occur in the Photosystem I (PS I) reaction centers in plants and bacteria. The primary electron donor P700 is at the heart of solar energy conversion process in PS I and the aim is to obtain a better understanding of the electronic and structural organization of P700 in the ground and excited states. Static Fourier Transform Infra-Red (FTIR) difference spectroscopy (DS) in combination with site directed mutagenesis and Density Functional Theory (DFT) based vibrational frequency simulations were used to investigate how protein interactions such as histidine ligation and hydrogen bonding modulate this organization. (P700+-P700) FTIR DS at 77K were obtained from a series of mutants from the cyanobacterium Synechocystis sp. 6803 (S. 6803) where the amino acid residues near the C=O groups of the two chlorophylls of P700 where specifically changed. (P700+-P700) FTIR DS was also obtained for a set of mutants from C. reinhardtii where the axial ligand to A0-, the primary electron acceptor in PS I was modified. The FTIR DS obtained from these mutants provides information on the axial ligands, the hydrogen bonding status as well as the polarity of the environment of specific functional groups that are part of the chlorophyll molecules that constitute P700. Assignment of the FTIR bands to vibrational modes in specific types of environment is very difficult. In order to assist the assignment of the difference bands in experimental spectra DFT based vibrational mode frequency calculations were undertaken for Chl-a and Chl-a+ model molecular systems under different set of conditions; in the gas phase, in solvents using the Polarizable Continuum Model (PCM), in the presence of explicit solvent molecules using QM/MM methods, and in the presence of axial ligands and hydrogen bonds. DFT methods were also used to calculate the charge, spin and redox properties of Chl-a/Chl-a’ dimer models that are representative of P700, the primary electron donor in PS I.
33

Functional proteomics of protein phosphorylation in algal photosynthetic membranes /

Turkina, Maria, January 2008 (has links)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2008. / Härtill 4 uppsatser. Includes bibliographical references.
34

Functional proteomics of protein phosphorylation in algal photosynthetic membranes /

Turkina, Maria, January 2008 (has links)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2008. / Härtill 4 uppsatser.

Page generated in 0.0511 seconds